F T7981 Pages: 2

Reg No.:	Name:
----------	-------

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

SEVENTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

Course Code: ME467 Course Name: CRYOGENIC ENGINEERING

Max. Marks: 100 Duration: 3 Hours

		PART A	
		Answer any three full questions, each carries 10 marks.	Marks
1	(a)	What you meant by cryogenics?	(2)
	(b)	What is Type I and Type II superconductors?	(3)
	(c)	Explain the historical development of cryogenics?	(5)
2	(a)	Explain Meissner effect?	(3)
	(b)	Distinguish between Ortho Hydrogen and Para Hydrogen.	(3)
	(c)	Explain the application of cryogenics in spacecrafts.	(4)
3	(a)	What are the performance parameters to be considered in gas liquefaction systems?	(3)
	(b)	Explain two applications of superconductivity.	(3)
	(c)	What is Precooled LindeHampson system?	(4)
4	(a)	What is FOM?	(2)
	(b)	Explain the working of Stirling cryocoolers.	(4)
	(c)	Explain the Ortho- para conversion of hydrogen in cryogenic gas liquefaction	(4)
		systems.	
		PART B Answer any three full questions, each carries 10 marks.	
5	(a)	Explain Simon Helium liquefier and show the process path on a T-s diagram.	(7)
	(b)	Why simple Linde-Hampson system cannot be used for liquefying gases such as He,	(3)
	()	H ₂ , and Ne?	()
6	(a)	With neat sketches, explain any one liquefaction system for hydrogen.	(6)
	(b)	Discuss the effect of compressor and expander efficiencies on the performance of	(4)
		Claude cycle.	
7	(a)	Derive an expression for COP of a thermodynamically ideal isobaric source cold-gas	(4)
		refrigerator.	
	(b)	Explain working of Linde-Hampson refrigerator. Derive expression for COP considering efficiency of compressor and effectiveness of heat exchangers.	(6)
R	(a)	Explain working of a Vuilleumier refrigerator Derive an expression for COP of a	(5)

F		T7981	Pages: 2		
		Vuilleumier refrigerator.			
	(b)	Discuss thermodynamics of magnetic cooling.	(5)		
	PART C Answer any four full questions, each carries 10 marks.				
9		Explain the features of cryogenic fluid transfer systems.	(10)		
10		What are the different types of insulations used in cryogenic equipments?	(10)		
11		With the help of a neat sketch explain a typical cryogenic liquid storage vessel.	(10)		
12		With a neat sketch explain the working of a platinum resistance thermometer.	(10)		
13		Explain the working of a turbine flow meter.	(10)		
14		Explain the working of a capacitance type level gauge.	(10)		
