B \$2045 Pages: 2

| Reg No.: Name: | Reg No.: | Name: |
|----------------|----------|-------|
|----------------|----------|-------|

## APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FOURTH SEMESTER B.TECH DEGREE EXAMINATION, DECEMBER 2018

**Course Code: CS202** 

Course Name: COMPUTER ORGANIZATION AND ARCHITECTURE (CS, IT)

Max. Marks: 100 Duration: 3 Hours

## PART A Answer all auestions Fach carries 3 marks

|   |     | Answer an questions. Each curries 5 marks.                                     |     |
|---|-----|--------------------------------------------------------------------------------|-----|
| 1 |     | Write the three-address, two-address and one-address representations of the    | 3   |
|   |     | operation below with relevant assumptions:                                     |     |
|   |     | $C \leftarrow [A] + [B]$                                                       |     |
| 2 |     | What is the use of linkage register in subroutine invocation?                  | 3   |
| 3 |     | Why is non-restoring division faster than restoring division?                  |     |
| 4 |     | Design and draw a 3X2 array multiplier.                                        | 3   |
|   |     | PART B  Answer any two questions. Each carries 9 marks.                        |     |
| 5 |     | Illustrate various addressing modes with proper examples. Which is the default | 9   |
|   |     | addressing mode selected by assemblers and compilers and why?                  |     |
| 6 |     | Give the flow chart for Booth's Algorithm. Illustrate using an example.        | 9   |
| 7 | (a) | Assuming that stack grows towards lower address range write assembly code for  | 4.5 |
|   |     | the following (Without using PUSH and POP):                                    |     |
|   |     | (i) Pushing elements stored at ITEM1, ITEM2 onto stack                         |     |
|   |     | (ii) Popping an element onto address ITEM                                      |     |
|   |     | (iii) Copying value of top of stack to address TOP                             |     |
| 7 | (b) | Compare and contrast single bus and multiple bus organisation of CPU.          | 4.5 |
|   |     | PART C Answer all questions. Each carries 3 marks.                             |     |

| 8  | Compare the two main modes of DMA transfer.                                  | 3 |
|----|------------------------------------------------------------------------------|---|
| 9  | Explain any two interrupt priority schemes.                                  | 3 |
| 10 | What is MFC signal? How is it related to Memory Access Time?                 | 3 |
| 11 | Which design feature of SRAM cells helps in value retention without refresh? | 3 |

|    |     | PART D Answer any two questions. Each carries 9 marks.                                             |     |
|----|-----|----------------------------------------------------------------------------------------------------|-----|
| 12 |     | Illustrate with an example SCSI bus arbitration and selection.                                     | 9   |
| 13 |     | With the help of a diagram examine the internal organisation of bit cells in a memory chip.        | 9   |
| 14 | (a) | Explain the architecture of USB with help of a diagram.                                            | 4.5 |
| 14 | (b) | Differentiate Direct and Associative mapped cache with examples.                                   | 4.5 |
|    |     | PART E                                                                                             |     |
|    |     | Answer any four questions. Each carries 10 marks.                                                  |     |
| 15 |     | Give a simple design for generating status bits for a 8-bit ALU.                                   | 10  |
| 16 |     | Draw a labelled block diagram of a processor unit with seven registers R1 to R7,a                  | 10  |
|    |     | status register, ALU with 3-selection variables and $C_{\text{in}}$ , and shifter with 3 selection |     |
|    |     | variables.                                                                                         |     |
| 17 |     | With the help of a flowchart for sign-magnitude addition/subtraction, explain the                  | 10  |
|    |     | steps involved in developing a hardwired control unit.                                             |     |
| 18 |     | Using a block diagram analyse the design of a microprogram control for a                           |     |

show how a designer would compose a control word for the processor unit.

What is a control word? With the help of proper illustrations and assumptions 10

With the help of a diagram establish the functioning of microprogram sequencer 10

processor unit.

in a microprogram controlled processor.

19

20