Reg No.:______ Name:_____

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE EXAMINATION (S), MAY 2019

Course Code: MA101
Course Name: CALCULUS

Max. Marks: 100 Duration: 3 Hours

PART A

Answer all questions, each carries 5 marks.

Marks

- 1 a) Check the convergence of the series $\sum_{k=1}^{\infty} \left(\frac{3k-4}{4k-5}\right)^k$ (2)
 - b) Find the Maclaurin series of $f(x) = \frac{1}{1+x}$, up to 3 terms (3)
- 2 a) If $z = (3x 2y)^4$, find $\frac{\partial^4 z}{\partial x \partial y^3}$ (2)
 - b) If $w = \log (\tan x + \tan y + \tan z)$ then prove that $\sin 2x \frac{\partial w}{\partial x} + \sin 2y \frac{\partial w}{\partial y} + \sin 2z \frac{\partial w}{\partial y} = 2$ (3)
- 3 a) Find the speed of a particle moving along the path $x = 2\cos t$, $y = 2\sin t$, z = t (2) at $t = \pi/2$
 - b) If $y'(t) = \cos t \ i + \sin t \ j$; y(0) = i j. Find y(t). (3)
- 4 a) Evaluate $\int_0^1 \int_0^{x^2} \int_0^2 dy \, dz \, dx$ (2)
 - b) Evaluate $\iint xy \, dx \, dy$ over the area bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and lying in the first quadrant. (3)
- 5 a) Show that $F(x, y) = 2xy^3i + 3x^2y^2j$ is conservative. (2)
 - b) If $\bar{r} = x \bar{\imath} + y \bar{\jmath} + z \bar{k}$ and $r = ||\bar{r}||$, prove that $\nabla_x \frac{\bar{r}}{r^3} = 0$ (3)
- 6 a) Evaluate by Stoke's theorem $\oint_C \{e^x dx + 2y dy dz\}$, where C is the curve $x^2 + y^2 = 4$, z = 2
 - b) Using Green's theorem evaluate $\int_{\mathcal{C}} x \, dy y \, dx$ where \mathcal{C} is the circle $x^2 + y^2 = 4$ (3)

PART B

Module 1

Answer any two questions, each carries 5 marks.

- 7 Test for convergence of the series $\sum_{k=1}^{\infty} \frac{1}{(8k^2-3k)^{1/2}}$ (5)
- 8 Find the radius of convergence and interval of convergence of the power (5) $\operatorname{series} \sum_{k=0}^{\infty} \frac{(2x-1)^k}{2^{2k}}.$

9 Show that the series
$$\sum_{k=1}^{\infty} (-1)^k \left(\frac{k}{k+1}\right)^{k^2}$$
 is convergent. (5)

Module 1I

Answer any two questions, each carries 5 marks.

- 10 Let $w = \sqrt{x^2 + y^2 + z^2}$, where $x = \cos \theta$, $y = \sin \theta$, $z = \tan \theta$. Find $\frac{dw}{d\theta}$ at $\theta = \frac{\pi}{4}$, using chain rule. (5)
- Find the local linear approximation L(x,y) to $f(x,y) = \ln (xy)$ at the point (5) P(1,2). Compare the error in approximating f by L at the point Q(1.01,2.01) with the distance between P and Q.
- Find relative extrema and saddle points, if any, of the function $f(x,y) = xy + \frac{8}{x} + \frac{8}{y}.$ (5)

Module 1II

Answer any two questions, each carries 5 marks.

- Find the unit tangent T(t) and unit normal N(t) to the curve (5) $x = a \cos t$, $y = a \sin t$, z = ct a >0
- Find the velocity and position vectors of the particle, if the acceleration vector $a(t) = \sin t i + \cos t j + e^t k \; ; \; v(0) = k \; ; \; r(0) = -i + k \; .$ (5)
- Find the equation of the tangent line to the curve of intersection of surfaces (5) $z = x^2 + y^2$ and $3x^2 + 2y^2 + z^2 = 9$ and the point (1,1,2).

Module 1V

Answer any two questions, each carries 5 marks.

- Evaluate by reversing the order of integration $\int_{0}^{a/\sqrt{2}} \int_{v}^{\sqrt{a^{2}-y^{2}}} x \, dx \, dy$ (5)
- 17 Evaluate $\iint_R xy \, dA$, where R is the sector in the first quadrant bounded by (5)

$$y = \sqrt{x}, \ y = 6 - x, \ y = 0.$$

18 Evaluate $\int_0^1 \int_{y^2}^1 \int_0^{1-x} x \, dz \, dx \, dy$ (5)

Module V

Answer any three questions, each carries 5 marks.

- Find the work done by $F(x, y) = (x^2 + y^2)i xj$ along the curve $C: x^2 + y^2 = 1 \text{ counter clockwise from (1,0) to (0,1)}$ (5)
- Determine whether $F(x, y) = 6y^2 i + 12xy j$ is a conservative vector field. If (5) so find the potential function for it.
- Find the divergence and curl of the vector field $F(x, y, z) = xyz^{2}i + yzx^{2}j + zxy^{2}k$ (5)
- Prove that $\int_{\mathcal{C}} (x^2 yz)\bar{\imath} + (y^2 zx)\bar{\jmath} + (z^2 xy)\bar{k}$. $d\bar{r}$ is independent of the path (5) and evaluate the integral along any curve from (0,0,0) to (1,2,3).
- 23 If $\bar{r} = x \bar{\imath} + y \bar{\jmath} + z \bar{k}$ and $r = ||\bar{r}||$, prove that $\nabla^2 f(r) = \frac{2}{r} f'(r) + f''(r)$. (5)

Module VI

Answer any three questions, each carries 5 marks.

- Using Green's theorem evaluate $\int_{\mathcal{C}} (xy + y^2) dx + x^2 dy$ where \mathcal{C} is the boundary of the region bounded by $y = x^2$ and $x = y^2$
- Evaluate the surface integral $\iint_{\sigma} z^2 ds$, where σ is the portion of the curve $z = \sqrt{x^2 + y^2}$ between z = 1 and z = 3
- Determine whether the vector field F(x, y, z) is free of sources and sinks. If not, locate them. (5)

$$i)F(x,y,z) = (y+z)\bar{\iota} - xz\bar{\jmath} + x^2\sin y \ \bar{k}$$

$$ii)F(x,y,z) = x^3\bar{\iota} + y^3\bar{\jmath} + 2z^3\bar{k}$$

- Use divergence theorem to find the outward flux of the vector field (5) $F(x,y,z) = (2x+y^2)i + xyj + (xy-2z)k \text{ across the surface } \sigma \text{ of the tetrahedron bounded by } x+y+z=2 \text{ and the coordinate planes.}$
- Using Stoke's theorem evaluate $\int_{C} \overline{F} \cdot d\overline{r}$; where $\overline{F} = xy\overline{\imath} + yz\overline{\jmath} + xz\overline{k}$; (5)

 C triangular path in the plane x + y + z = 1 with vertices at (1,0,0), (0,1,0) and (0,0,1) in the first octant
