Total Pages: 2
Reg No.:
Name: $\qquad$

# APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY FIRST/SECOND SEMESTER B.TECH DEGREE EXAMINATION, JULY 2017 <br> Course Code: PH100 Course Name: ENGINEERING PHYSICS 

Max. Marks: 100
Duration: 3 Hours

## PART A <br> Answer all questions, each carries 2 marks.

1 Define resonance. Give one practical example of resonance.
2 State the laws of transverse vibrations of a stretched string.
3 Distinguish between geometrical path and optical path.
4 Explain Rayleigh's criterion for the resolution of spectral lines.
5 Distinguish between plane polarized light and un-polarized light.
6 Show that superconductors are perfect diamagnets.
$7 \quad$ What is the physical significance of wave function?
8 What is Fermi energy?
9 What is the relation connecting reverberation time and total absorption?
10 What is meant by non-destructive testing of materials?
11 Distinguish between spontaneous and stimulated emission.
12 What is the physical meaning of numerical aperture?
PART B
Answer any 10 questions, each carries 4 marks.

21 The dimensions of an auditorium are 60 m X 15 m X 10 M and its interior surface have an average absorption co-efficient of 0.25 . Find the reverberation time of the auditorium?

An ultrasonic source of 0.09 MHz sends down a pulse towards the sea bed which returns after 0.55 sec . The velocity of sound in sea water is $1800 \mathrm{~m} / \mathrm{sec}$. Calculate the depth of the sea and the wave length of the pulse.
Explain the recording and reconstruction of hologram.
Calculate the numerical aperture and acceptance angle of a fibre with a core index of 1.54 and a cladding index of 1.50 when the fibre is inside water of refractive index 1.33.

## PART C <br> Answer any three questions, each carries 6 marks.

Write down the differential equation of a damped harmonic oscillator and obtain its solution. Show graphically the displacement -time curve for over damped, critically damped and under damped cases of a harmonic oscillator. Mention the conditions of their occurrence.
Derive an expression for the diameter of a thin wire in air wedge experiment.
Distinguish between Type I and Type II superconductors with suitable diagrams and examples.
Write down the Schrodinger equation for a particle in a one-dimensional infinite potential well. Also derive the equation for wave function and energy.

PART C
Answer any three questions. Each question carries 6 marks
Explain the production of ultrasonic waves using a piezo electric oscillator with the help of a neat labelled circuit diagram.
What are the factors affecting acoustics of buildings? Give remedies.
Explain the principle, construction and working of Helium-Neon laser with the help of energy level diagram.
What is an LED? Explain the construction and working of LED. Give two applications.

