Seventh Edition

Fundamentals of
 Logic Design

- ar o dir La to

Charles H. Roth, Jr.

Fundamentals of Logic Design

SEVENTH EDITION

Charles H. Roth, Jr.
University of Texas at Austin
\section*{Larry L. Kinney}
University of Minnesota, Twin Cities

Fundamentals of Logic Design, Seventh Edition

Charles H. Roth, Jr. and Larry L. Kinney
Publisher, Global Engineering: Tim Anderson
Senior Developmental Editor: Hilda Gowans
Editorial Assistant: Tanya Altieri
Senior Marketing Manager: Kate lannotti
Media Editor: Chris Valentine
Content Project Manager: Jennifer Ziegler
Production Service: RPK Editorial Services
Copyeditor: Patricia Daly
Proofreader: Martha McMaster
Indexer: Shelly Gerger-Knecht|
Compositor: diacriTech
Senior Art Director: Michelle Kunkler
Internal Designer: Carmela Periera
Cover Designer: Rose Alcorn
Cover Image: © Kudryashka/Shutterstock.com; (C) tovovan/Shutterstock.com

Rights Acquisitions Specialist: Amber Hosea
Text and Image Permissions Researcher: Kristiina Paul
Senior Manufacturing Planner: Doug Wilke
© 2014, 2010, and 2004 Cengage Learning
ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706.

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be emailed to permissionrequest@cengage.com.

Library of Congress Control Number: 2012952056
ISBN-13: 978-1-133-62847-7
ISBN-10: 1-133-62847-8

Cengage Learning

200 First Stamford Place, Suite 400
Stamford, CT 06902
USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at: international.cengage.com/region.

Cengage Learning products are represented in Canada by Nelson Education Ltd.

For your course and learning solutions, visit
www.cengage.com/engineering.
Purchase any of our products at your local college store or at our preferred online store www.cengagebrain.com.

Except where otherwise noted, all content is © Cengage Learning 2014.

Dedication

Dedicated to the memory of Karen Kinney and our daughters, Laurie and Kristina.
-Larry Kinney

Brief Contents

1 Introduction
Number Systems and Conversion 1
2 Boolean Algebra 29
3 Boolean Algebra (Continued) 60
4 Applications of Boolean Algebra Minterm and Maxterm Expansions 87
5 Karnaugh Maps 123
6 Quine-McCluskey Method 167
7 Multi-Level Gate Circuits NAND and NOR Gates 193
8 Combinational Circuit Design and Simulation Using Gates 225
9 Multiplexers, Decoders, and Programmable Logic Devices 252
10 Introduction to VHDL 294
11 Latches and Flip-Flops 331
12 Registers and Counters 370
13 Analysis of Clocked Sequential Circuits 412
14 Derivation of State Graphs and Tables 453
15 Reduction of State Tables
15 State Assignment 497
16 Sequential Circuit Design 545
17 vHDL for Sequential Logic 585
18 Circuits for Arithmetic Operations 626
19 State Machine Design with SM Charts 660
20 vHDL for Digital System Design 684
Appendices 713

Contents

Preface xvii
How to Use This Book for Self-Study xxii
About the Authors xxiii
Unit 1 Introduction
Number Systems and Conversion 1
Objectives 1
Study Guide 2
1.1 Digital Systems and Switching Circuits 6
1.2 Number Systems and Conversion 8
1.3 Binary Arithmetic 12
1.4 Representation of Negative Numbers 16
Sign and Magnitude Numbers 16
2's Complement Numbers 16
Addition of 2's Complement Numbers 17
1's Complement Numbers 19
Addition of 1's Complement Numbers 19
1.5 Binary Codes 21
Problems 24
Unit 2 Boolean Algebra 29
Objectives 29
Study Guide 30
2.1 Introduction 36
2.2 Basic Operations 37
2.3 Boolean Expressions and Truth Tables 39
2.4 Basic Theorems 41
2.5 Commutative, Associative, Distributive, and DeMorgan's Laws 43
2.6 Simplification Theorems 46
2.7 Multiplying Out and Factoring 49
2.8 Complementing Boolean Expressions 52
Problems 53
Unit 3 Boolean Algebra (Continued) 60
Objectives 60
Study Guide 61
3.1 Multiplying Out and Factoring Expressions 66
3.2 Exclusive-OR and Equivalence Operations 68
3.3 The Consensus Theorem 70
3.4 Algebraic Simplification of Switching Expressions 72
3.5 Proving Validity of an Equation 74
Programmed Exercises 77
Problems 82
Unit 4 Applications of Boolean Algebra Minterm and Maxterm Expansions 87
Objectives 87
Study Guide 88
4.1 Conversion of English Sentences to Boolean Equations 94
4.2 Combinational Logic Design Using a Truth Table 96
4.3 Minterm and Maxterm Expansions 97
4.4 General Minterm and Maxterm Expansions 100
4.5 Incompletely Specified Functions 103
4.6 Examples of Truth Table Construction 104
4.7 Design of Binary Adders and Subtracters 108
Problems 114
Unit 5 Karnaugh Maps 123
Objectives 123
Study Guide 124
5.1 Minimum Forms of Switching Functions 134
5.2 Two- and Three-Variable Karnaugh Maps 136
5.3 Four-Variable Karnaugh Maps 141
5.4 Determination of Minimum Expressions Using Essential Prime Implicants 144
5.5 Five-Variable Karnaugh Maps 149
5.6 Other Uses of Karnaugh Maps 152
5.7 Other Forms of Karnaugh Maps 153
Programmed Exercises 154
Problems 159
Unit 6 Quine-McCluskey Method 167
Objectives 167
Study Guide 168
6.1 Determination of Prime Implicants 173
6.2 The Prime Implicant Chart 176
6.3 Petrick's Method 179
6.4 Simplification of Incompletely Specified Functions 181
6.5 Simplification Using Map-Entered Variables 182
6.6 Conclusion 184
Programmed Exercise 185
Problems 189
Unit 7 Multi-Level Gate Circuits NAND and NOR Gates 193
Objectives 193
Study Guide 194
7.1 Multi-Level Gate Circuits 199
7.2 NAND and NOR Gates 204
7.3 Design of Two-Level NAND- and NOR-Gate Circuits 206
7.4 Design of Multi-Level NAND- and NOR-Gate Circuits 209
7.5 Circuit Conversion Using Alternative Gate Symbols 210
7.6 Design of Two-Level, Multiple-Output Circuits 214
Determination of Essential Prime Implicants for Multiple-Output Realization 216
7.7 Multiple-Output NAND- and NOR-Gate Circuits 217
Problems 218
Unit 8 Combinational Circuit Design and Simulation Using Gates 225
Objectives 225
Study Guide 226
8.1 Review of Combinational Circuit Design 229
8.2 Design of Circuits with Limited Gate Fan-In 230
8.3 Gate Delays and Timing Diagrams 232
8.4 Hazards in Combinational Logic 234
8.5 Simulation and Testing of Logic Circuits 240
Problems 243
Design Problems 246
Seven-Segment Indicator 246
Unit 9 Multiplexers, Decoders, and Programmable Logic Devices 252
Objectives 252
Study Guide 253
9.1 Introduction 260
9.2 Multiplexers 261
9.3 Three-State Buffers 265
9.4 Decoders and Encoders 268
9.5 Read-Only Memories 271
9.6 Programmable Logic Devices 275
Programmable Logic Arrays 275
Programmable Array Logic 278
9.7 Complex Programmable Logic Devices 280
9.8 Field-Programmable Gate Arrays 282
Decomposition of Switching Functions 283
Problems 286
Unit 10 Introduction to VHDL 294
Objectives 294
Study Guide 295
10.1 VHDL Description of Combinational Circuits 299
10.2 VHDL Models for Multiplexers 304
10.3 VHDL Modules 306
Four-Bit Full Adder 308
10.4 Signals and Constants 311
10.5 Arrays 312
10.6 VHDL Operators 315
10.7 Packages and Libraries 316
10.8 IEEE Standard Logic 318
10.9 Compilation and Simulation of VHDL Code 321
Problems 322
Design Problems 327
Unit 11 Latches and Flip-Flops 331
Objectives 331
Study Guide 332
11.1 Introduction 336
11.2 Set-Reset Latch 338
11.3 Gated Latches 342
11.4 Edge-Triggered D Flip-Flop 346
11.5 S-R Flip-Flop 349
11.6 J-K Flip-Flop 350
11.7 T Flip-Flop 351
11.8 Flip-Flops with Additional Inputs 352
11.9 Asynchronous Sequential Circuits 354
11.10 Summary 357
Problems 358
Programmed Exercise 367
Unit 12 Registers and Counters 370
Objectives 370
Study Guide 371
12.1 Registers and Register Transfers 376
Parallel Adder with Accumulator 378
12.2 Shift Registers 380
12.3 Design of Binary Counters 384
12.4 Counters for Other Sequences 389
Counter Design Using D Flip-Flops 393
12.5 Counter Design Using S-R and J-K Flip-Flops 395
12.6 Derivation of Flip-Flop Input Equations-Summary 398 Problems 402
Unit 13 Analysis of Clocked Sequential Circuits 412
Objectives 412
Study Guide 413
13.1 A Sequential Parity Checker 419
13.2 Analysis by Signal Tracing and Timing Charts 421
13.3 State Tables and Graphs 425
Construction and Interpretation of Timing Charts 430
13.4 General Models for Sequential Circuits 432
Programmed Exercise 436
Problems 441
Unit 14 Derivation of State Graphs and Tables 453
Objectives 453
Study Guide 454
14.1 Design of a Sequence Detector 457
14.2 More Complex Design Problems 463
14.3 Guidelines for Construction of State Graphs 467
14.4 Serial Data Code Conversion 473
14.5 Alphanumeric State Graph Notation 476
14.6 Incompletely Specified State Tables 478
Programmed Exercises 480
Problems 486
Unit 15 Reduction of State Tables State Assignment 497
Objectives 497
Study Guide 498
15.1 Elimination of Redundant States 505
15.2 Equivalent States 507
15.3 Determination of State Equivalence Using an Implication Table 509
15.4 Equivalent Sequential Circuits 512
15.5 Reducing Incompletely Specified State Tables 514
15.6 Derivation of Flip-Flop Input Equations 517
15.7 Equivalent State Assignments 519
15.8 Guidelines for State Assignment 523
15.9 Using a One-Hot State Assignment 528
Problems 531
Unit 16 Sequential Circuit Design 545
Objectives 545
Study Guide 546
16.1 Summary of Design Procedure for Sequential Circuits 548
16.2 Design Example - Code Converter 549
16.3 Design of Iterative Circuits 553
Design of a Comparator 553
16.4 Design of Sequential Circuits Using ROMs and PLAs 556
16.5 Sequential Circuit Design Using CPLDs 559
16.6 Sequential Circuit Design Using FPGAs 563
16.7 Simulation and Testing of Sequential Circuits 565
16.8 Overview of Computer-Aided Design 570
Design Problems 572
Additional Problems 578
Unit 17 VHDL for Sequential Logic 585
Objectives 585
Study Guide 586
17.1 Modeling Flip-Flops Using VHDL Processes 590
17.2 Modeling Registers and Counters Using VHDL Processes 594
17.3 Modeling Combinational Logic Using VHDL Processes 599
17.4 Modeling a Sequential Machine 601
17.5 Synthesis of VHDL Code 608
17.6 More About Processes and Sequential Statements 611
Problems 613
Simulation Problems 624
Unit 18 Circuits for Arithmetic Operations 626
Objectives 626
Study Guide 627
18.1 Serial Adder with Accumulator 629
18.2 Design of a Binary Multiplier 633
18.3 Design of a Binary Divider 637
Programmed Exercises 644
Problems 648
Unit 19 State Machine Design with SM Charts 660
Objectives 660
Study Guide 661
19.1 State Machine Charts 662
19.2 Derivation of SM Charts 667
19.3 Realization of SM Charts 672
Problems 677
Unit 20 VHDL for Digital System Design 684
Objectives 684
Study Guide 685
20.1 VHDL Code for a Serial Adder 688
20.2 VHDL Code for a Binary Multiplier 690
20.3 VHDL Code for a Binary Divider 700
20.4 VHDL Code for a Dice Game Simulator 702
20.5 Concluding Remarks 705
Problems 706
Lab Design Problems 709
A Appendices 713
A MOS and CMOS Logic 713
B VHDL Language Summary 719
C Tips for Writing Synthesizable VHDL Code 724
D Proofs of Theorems 727
E Answers to Selected Study Guide Questions and Problems 729
References 785
Index 786
Description of the CD 792

Preface

Purpose of the Text

This text is written for a first course in the logic design of digital systems. It is written on the premise that the student should understand and learn thoroughly certain fundamental concepts in a first course. Examples of such fundamental concepts are the use of Boolean algebra to describe the signals and interconnections in a logic circuit, use of systematic techniques for simplification of a logic circuit, interconnection of simple components to perform a more complex logic function, analysis of a sequential logic circuit in terms of timing charts or state graphs, and use of a control circuit to control the sequence of events in a digital system.

The text attempts to achieve a balance between theory and application. For this reason, the text does not overemphasize the mathematics of switching theory; however, it does present the theory that is necessary for understanding the fundamental concepts of logic design. After completing this text, the student should be prepared for a more advanced digital systems design course that stresses more intuitive concepts like the development of algorithms for digital processes, partitioning of digital systems into subsystems, and implementation of digital systems using currently available hardware. Alternatively, the student should be prepared to go on to a more advanced course in switching theory that further develops the theoretical concepts that have been introduced here.

Contents of the Text

After studying this text, students should be able to apply switching theory to the solution of logic design problems. They will learn both the basic theory of switching circuits and how to apply it. After a brief introduction to number systems, they will study switching algebra, a special case of Boolean algebra, which is the basic mathematical tool needed to analyze and synthesize an important class of switching
circuits. Starting from a problem statement, they will learn to design circuits of logic gates that have a specified relationship between signals at the input and output terminals. Then they will study the logical properties of flip-flops, which serve as memory devices in sequential switching circuits. By combining flip-flops with circuits of logic gates, they will learn to design counters, adders, sequence detectors, and similar circuits. They will also study the VHDL hardware description language and its application to the design of combinational logic, sequential logic, and simple digital systems.

As integrated circuit technology continues to improve to allow more components on a chip, digital systems continue to grow in complexity. Design of such complex systems is facilitated by the use of a hardware description language such as VHDL. This text introduces the use of VHDL in logic design and emphasizes the relationship between VHDL statements and the corresponding digital hardware. VHDL allows digital hardware to be described and simulated at a higher level before it is implemented with logic components. Computer programs for synthesis can convert a VHDL description of a digital system to a corresponding set of logic components and their interconnections. Even though use of such computer-aided design tools helps to automate the logic design process, we believe that it is important to understand the underlying logic components and their timing before writing VHDL code. By first implementing the digital logic manually, students can more fully appreciate the power and limitations of VHDL.

Although the technology used to implement digital systems has changed significantly since the first edition of this text was published, the fundamental principles of logic design have not. Truth tables and state tables still are used to specify the behavior of logic circuits, and Boolean algebra is still a basic mathematical tool for logic design. Even when programmable logic devices (PLDs) are used instead of individual gates and flip-flops, reduction of logic equations is still desirable in order to fit the equations into smaller PLDs. Making a good state assignment is still desirable, because without a good assignment, the logic equations may require larger PLDs.

Strengths of the Text

Although many texts are available in the areas of switching theory and logic design, this text is designed so that it can be used in either a standard lecture course or in a self-paced course. In addition to the standard reading material and problems, study guides and other aids for self-study are included in the text. The content of the text is divided into 20 study units. These units form a logical sequence so that mastery of the material in one unit is generally a prerequisite to the study of succeeding units. Each unit consists of four parts. First, a list of objectives states precisely what you are expected to learn by studying the unit. Next, the study guide contains reading assignments and study questions. As you work through the unit, you should write out the answers to these study questions. The text material and problem set that follow
are similar to a conventional textbook. When you complete a unit, you should review the objectives and make sure that you have met them. Each of the units has undergone extensive class testing in a self-paced environment and has been revised based on student feedback.

The study units are divided into three main groups. The first 9 units treat Boolean algebra and the design of combinational logic circuits. Units 11 through 16, 18 and 19 are mainly concerned with the analysis and design of clocked sequential logic circuits, including circuits for arithmetic operations. Units 10, 17, and 20 introduce the VHDL hardware description language and its application to logic design.

The text is suitable for both computer science and engineering students. Material relating to circuit aspects of logic gates is contained in Appendix A so that this material can conveniently be omitted by computer science students or other students with no background in electronic circuits. The text is organized so that Unit 6 on the Quine-McCluskey procedure may be omitted without loss of continuity. The three units on VHDL can be studied in the normal sequence, studied together after the other units, or omitted entirely.

Supplements and Resources

This book comes with support materials for both the instructor and the student. The supplements are housed on the book's companion website. To access the additional course materials, please visit www.cengagebrain.com. At the cengagebrain.com home page, search for the ISBN of your title (from the back cover of your book) using the search box at the top of the page. This will take you to the product page where these resources can be found.

Instructor Resources

An instructor's solution manual (ISM) is available that includes suggestions for using the text in a standard or self-paced course, quizzes on each of the units, and suggestions for laboratory equipment and procedures. The instructor's manual also contains solutions to problems, to unit quizzes, and to lab exercises.

The ISM is available in both print and digital formats. The digital version is available to registered instructors at the publisher's website. This website also includes both a full set of PowerPoint slides containing all graphical images and tables in the text, and a set of Lecture Builder PowerPoint slides of all equations and example problems.

Student Resources

Since the computer plays an important role in the logic design process, integration of computer usage into the first logic design course is very important. A computer-aided logic design program, called LogicAid, is included on the CD that accompanies this
text. LogicAid allows the student to easily derive simplified logic equations from minterms, truth tables, and state tables. This relieves the student of some of the more tedious computations and permits the solution of more complex design problems in a shorter time. LogicAid also provides tutorial help for Karnaugh maps and derivation of state graphs.

Several of the units include simulation or laboratory exercises. These exercises provide an opportunity to design a logic circuit and then test its operation. The SimUaid logic simulator, also available on the book's accompanying CD, may be used to verify the logic designs. The lab equipment required for testing either can be a breadboard with integrated circuit flip-flops and logic gates or a circuit board with a programmable logic device. If such equipment is not available, the lab exercises can be simulated with SimUaid or just assigned as design problems. This is especially important for Units 8, 16, and 20 because the comprehensive design problems in these units help to review and tie together the material in several of the preceding units.

The DirectVHDL software on the CD provides a quick way to check and simulate VHDL descriptions of hardware. This software checks the syntax of the VHDL code as it is typed in so that most syntax errors can be corrected before the simulation phase.

Changes from Previous Editions

The text has evolved considerably since the fifth edition. Programmable logic and the VHDL hardware description language were added, and an emphasis was placed on the role of simulation and computer-aided design of logic circuits. The discussion of VHDL, hazards, latches and one-hot state assignments was expanded. Numerous problems were added. Several additional changes have been made for the seventh edition. The discussion of number systems was reorganized so that one's complement number systems can be easily omitted. In the unit on Boolean algebra, the laws of switching algebra are first derived using switch networks and truth tables; these are used to define Boolean algebra and, then, further theorems of Boolean algebra are derived that are useful in simplifying switching algebra expressions. The discussion of adders is expanded to include carry-lookahead adders. Alternative implementations of multiplexers are included and also a discussion of active high and active low signals. Other types of gated latches are discussed, and a brief introduction to asynchronous sequential circuits is included. There is more discussion of incompletely specified state tables and how they may occur, and reducing incompletely specified state tables is briefly discussed. Problems have been added throughout the book with an emphasis on more challenging problems than the typical exercises. In addition, the logic design and simulation software that accompanies the text has been updated and improved.

Acknowledgments

To be effective, a book designed for self-study cannot simply be written. It must be tested and revised many times to achieve its goals. We wish to express our appreciation to the many professors, proctors, and students who participated in this process. Special thanks go to Dr. David Brown, who helped teach the self-paced course, and who made many helpful suggestions for improving the fifth edition. Special thanks to graduate teaching assistant, Mark Story, who developed many new problems and solutions for the fifth edition and who offered many suggestions for improving the consistency and clarity of the presentation.

The authors especially thank the most recent reviewers of the text. Among others, they are

Clark Guest, University of California, San Diego
Jayantha Herath, St Cloud State University
Nagarajan Kandasamy, Drexel University
Avinash Karanth Kodi, Ohio University
Jacob Savir, Newark College of Engineering
Melissa C. Smith, Clemson University
Larry M. Stephens, University of South Carolina
Feedback from the readers, both critical and appreciative, is welcome. Please send your comments, concerns, and suggestions to globalengineering@cengage.com.

Charles H. Roth, Jr.

How to Use This Book for Self-Study

If you wish to learn all of the material in this text to mastery level, the following study procedures are recommended for each unit:

1. Read the Objectives of the unit. These objectives provide a concise summary of what you should be able to do when you complete studying the unit.
2. Work through the Study Guide. After reading each section of the text, write out the answers to the corresponding study guide questions. In many cases, blank spaces are left in the study guide so that you can write your answers directly in this book. By doing this, you will have the answers conveniently available for later review. The study guide questions generally will help emphasize some of the important points in each section or will guide you to a better understanding of some of the more difficult points. If you cannot answer some of the study guide questions, this indicates that you need to study the corresponding section in the text more before proceeding. The answers to selected study guide questions are given in the back of this book; answers to the remaining questions generally can be found within the text.
3. Several of the units (Units $3,5,6,11,13,14$, and 18) contain one or more programmed exercises. Each programmed exercise will guide you step-by-step through the solution of one of the more difficult types of problems encountered in this text. When working through a programmed exercise, be sure to write down your answer for each part in the space provided before looking at the answer and continuing with the next part of the exercise.
4. Work the assigned Problems at the end of the unit. Check your answers against those at the end of the book and rework any problems that you missed.
5. Reread the Objectives of the unit to make sure that you can meet all of them. If in doubt, review the appropriate sections of the text.
6. If you are using this text in a self-paced course, you will need to pass a readiness test on each unit before proceeding with the next unit. The purpose of the readiness test is to make sure that you have mastered the objectives of one unit before moving on to the next unit. The questions on the test will relate directly to the objectives of the unit, so that if you have worked through the study guide and written out answers to all of the study guide questions and to the problems assigned in the study guide, you should have no difficulty passing the test.

About the Authors

Charles H. Roth, Jr. is Professor Emeritus of Electrical and Computer Engineering at the University of Texas at Austin. He has been on the UT faculty since 1961. He received his BSEE degree from the University of Minnesota, his MSEE and EE degrees from the Massachusetts Institute of Technology, and his PhD degree in EE from Stanford University. His teaching and research interests included logic design, digital systems design, switching theory, microprocessor systems, and computeraided design. He developed a self-paced course in logic design which formed the basis of his textbook, Fundamentals of Logic Design. He is also the author of Digital Systems Design Using VHDL, two other textbooks, and several software packages. He is the author or co-author of more than 50 technical papers and reports. Six PhD students and 80 MS students have received their degrees under his supervision. He received several teaching awards including the 1974 General Dynamics Award for Outstanding Engineering Teaching.

Larry L. Kinney is Professor Emeritus in Electrical and Computer Engineering at the University of Minnesota Twin Cities. He received the BS, MS, and PhD in Electrical Engineering from the University of Iowa in 1964, 1965, and 1968, respectively, and joined the University of Minnesota in 1968. He has taught a wide variety of courses including logic design, microprocessor/microcomputer systems, computer design, switching theory, communication systems and error-correcting codes. His major areas of research interest are testing of digital systems, built-in self-test, computer design, microprocessor-based systems, and error-correcting codes.

Introduction Number Systems and Conversion

Objectives

1. Introduction

The first part of this unit introduces the material to be studied later. In addition to getting an overview of the material in the first part of the course, you should be able to explain
a. The difference between analog and digital systems and why digital systems are capable of greater accuracy
b. The difference between combinational and sequential circuits
c. Why two-valued signals and binary numbers are commonly used in digital systems
2. Number systems and conversion

When you complete this unit, you should be able to solve the following types of problems:
a. Given a positive integer, fraction, or mixed number in any base (2 through 16); convert to any other base. Justify the procedure used by using a power series expansion for the number.
b. Add, subtract, multiply, and divide positive binary numbers. Explain the addition and subtraction process in terms of carries and borrows.
c. Write negative binary numbers in sign and magnitude, 1's complement, and 2's complement forms. Add signed binary numbers using 1's complement and 2's complement arithmetic. Justify the methods used. State when an overflow occurs.
d. Represent a decimal number in binary-coded-decimal (BCD), 6-3-1-1 code, excess-3 code, etc. Given a set of weights, construct a weighted code.

Study Guide

1. Study Section 1.1, Digital Systems and Switching Circuits, and answer the following study questions:
(a) What is the basic difference between analog and digital systems?
(b) Why are digital systems capable of greater accuracy than analog systems?
(c) Explain the difference between combinational and sequential switching circuits.
(d) What common characteristic do most switching devices used in digital systems have?
(e) Why are binary numbers used in digital systems?
2. Study Section 1.2, Number Systems and Conversion. Answer the following study questions as you go along:
(a) Is the first remainder obtained in the division method for base conversion the most or least significant digit?
(b) Work through all of the examples in the text as you encounter them and make sure that you understand all of the steps.
(c) An easy method for conversion between binary and hexadecimal is illustrated in Equation (1-1). Why should you start forming the groups of four bits at the binary point instead of the left end of the number?
(d) Why is it impossible to convert a decimal number to binary on a digit-by-digit basis as can be done for hexadecimal?
(e) Complete the following conversion table.

Binary (base 2)	Octal (base 8)	Decimal (base 10)	Hexadecimal (base 16)
0	0	0	0
1			
10			
11			
100			
101			
110			
111			
1000			
10010			
100			
1011			
1100			
1101			
1110			
1111	20		
10000	20		

(f) Work Problems 1.1, 1.2, 1.3, and 1.4 .
3. Study Section 1.3, Binary Arithmetic.
(a) Make sure that you can follow all of the examples, especially the propagation of borrows in the subtraction process.
(b) To make sure that you understand the borrowing process, work out a detailed analysis in terms of powers of 2 for the following example:
1100
-101
-111
4. Work Problems $1.5,1.6$, and 1.17(a).
5. Study Section 1.4, Representation of Negative Numbers.
(a) In digital systems, why are 1's complement and 2's complement commonly used to represent negative numbers instead of sign and magnitude?
(b) State two different ways of forming the 1's complement of an n-bit binary number.
(c) State three different ways of forming the 2 's complement of an n-bit binary number.
(d) If the word length is $n=4$ bits (including sign), what decimal number does 1000_{2} represent in sign and magnitude?
In 2 's complement?
In 1's complement?
(e) Given a negative number represented in 2's complement, how do you find its magnitude?

Given a negative number represented in 1's complement, how do you find its magnitude?
(f) If the word length is 6 bits (including sign), what decimal number does 100000_{2} represent in sign and magnitude?

In 2's complement?

In 1's complement?
(g) What is meant by an overflow? How can you tell that an overflow has occurred when performing 1's or 2's complement addition?

Does a carry out of the last bit position indicate that an overflow has occurred?
(h) Work out some examples of 1's and 2's complement addition for various combinations of positive and negative numbers.
(i) What is the justification for using the end-around carry in 1's complement addition?
(j) The one thing that causes the most trouble with 2's complement numbers is the special case of the negative number which consists of a 1 followed by all 0 's (1000 . . 000). If this number is n bits long, what number does it represent and why? (It is not negative zero.)
(k) Work Problems 1.7 and 1.8 .
6. Study Section 1.5 , Binary Codes.
(a) Represent 187 in BCD code, excess-3 code, 6-3-1-1 code, and 2-out-of-5 code.
(b) Verify that the 6-3-1-1 code is a weighted code. Note that for some decimal digits, two different code combinations could have been used. For example, either 0101 or 0110 could represent 4 . In each case the combination with the smaller binary value has been used.
(c) How is the excess- 3 code obtained?
(d) How are the ASCII codes for the decimal digits obtained? What is the relation between the ASCII codes for the capital letters and lowercase letters?
(e) Work Problem 1.9.
7. If you are taking this course on a self-paced basis, you will need to pass a readiness test on this unit before going on to the next unit. The purpose of the readiness test is to determine if you have mastered the material in this unit and are ready to go on to the next unit. Before you take the readiness test:
(a) Check your answers to the problems against those provided at the end of this book. If you missed any of the problems, make sure that you understand why your answer is wrong and correct your solution.
(b) Make sure that you can meet all of the objectives listed at the beginning of this unit.

