\qquad

SECOND SEMESTER B.TECH DEGREE EXAMINATION, JULY 2016
 Course Code: MA-102

 Course Name: DIFFERENTIAL EQUATIONS

 Course Name: DIFFERENTIAL EQUATIONS}

Max. Marks: 100
Duration: 3 hrs

PART A
 Answer all questions Each carries 3 marks

(1) Find the general solution of $y^{\prime \prime \prime}-y=0$
(2) Find the wronskian of the following $e^{-x} \cos 5 x ; e^{-x} \sin 5 x$
(3) Solve $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+4 y=e^{2 x}$
(4) Solve $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}=x^{2}$
(5) Express $f(x)=x$ as aFourier series in the interval $-\pi<x<\pi$
(6) Obtain the half range Fourier sine series for the function e^{x} in $0<x<2$
(7) Form the partial differential equation by eliminating the arbitrary function from $z=y^{2}+2 f\left(\frac{1}{x}+\log y\right.$
(8) Solve $p \sqrt{x}+q \sqrt{y}=\sqrt{z}$
(9) Using the method of separation of variables solve $\frac{\partial u}{\partial x}=2 \frac{\partial u}{\partial t}+u$ where $u(x, 0)=3 e^{-5 x}$
(10) State the one dimensional wave equation with boundary conditions and initial conditions for solving it
(11) In the Heat equation $\frac{\partial u}{\partial t}=\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}$ what does \propto^{2} indicate. State the boundary and initial conditions for solving it
(12) Find the steady state temperature distribution in a rod of length 25 cm , if the ends of the rod are kept at $20^{\circ} \mathrm{c}$ and $70^{\circ} \mathrm{c}$.

PART B
Answer one full question from each module
Module -I

$$
\begin{equation*}
\text { (a) Solve } y^{\prime \prime \prime}-8 y^{\prime \prime}+37 y^{\prime}-50 y=0 \tag{13}
\end{equation*}
$$

A

(b)Determine all possible solutions to the initial value problem

$$
\begin{equation*}
y^{\prime}=1+y^{2}, y(0)=0 \text { in }|x|<3,|y|<2 \tag{5}
\end{equation*}
$$

OR
(14) (a)Find the general solution of $y^{i v}-y^{\prime \prime \prime}-9 y^{\prime \prime}-11 y^{\prime}-4 y=0$
(b)Determine all possible solutions to the initial value problem $y^{\prime}=y^{\frac{1}{2}}, y(0)=0$.

Module - II

(15) (a)Solve by method of variation of parameters $\frac{d^{2} y}{d x^{2}}+y=x \sin x$.
(b)Solve $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+y=x e^{x} \sin x$.

OR
(a)Solve $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}-4 y=x^{2}+2 \log x$.
(b)Solve $\frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+3 y=\sin 3 x \sin 2 x$.

Module - III

(17) (a)Obtain the Fourier series for the function $f(x)$ given by
$f(x)=$
$\left\{\begin{array}{r}1+\frac{2 x}{\pi}-\pi \leq x \leq 0 \\ 1-\frac{2 x}{\pi} \quad 0 \leq x \leq \pi\end{array}\right.$
(b)Obtain the Fourier series to represent the function

$$
\begin{equation*}
f(x)=|\sin x| ;-\pi<x<\pi \tag{5}
\end{equation*}
$$

OR
(18) (a)Expand the function $f(x)=x \sin x$ as a Fourier series in the interval $-\pi \leq x \leq$
(b)Find the half range cosine series for the function $f(x)=x^{2}$ in the range $0 \leq x \leq \pi$
(a)Solve $\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{2} \partial y}=5 e^{3 x}-7 x^{2} y$.
(b)Solve $(x+y) z p+(x-y) z q=x^{2}+y^{2}$

OR
(a) Solve $\frac{\partial^{3} z}{\partial x^{3}}-4 \frac{\partial^{3} z}{\partial x^{2} \partial y}+4 \frac{\partial^{3} z}{\partial x \partial y^{2}}=2 \sin (3 x+2 y)$.
(b)Solve $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=\cos 2 x \cos 3 y$.

Module - V

(21) A tightly stretched string with fixed end points $\boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{x}=\boldsymbol{l}$ is initially in a position given by $y=y_{0} \sin ^{3}\left(\frac{\pi x}{l}\right)$. If it is released from rest from this position, find the displacement $\boldsymbol{y}(\boldsymbol{x}, \boldsymbol{t})$.

OR
(22) A tightly stretched string with fixed end points $\boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{x}=\boldsymbol{l}$ is initially at rest in its equilibrium position. If it is vibrating by giving to each of its points a velocity $\lambda \boldsymbol{x}(\boldsymbol{l}-\boldsymbol{x})$, find the displacement of the string at any distance x from one end at any time \boldsymbol{t}.

Module - VI

(23) A bar 10 cm long with insulated sides has its ends A and B maintained at $30^{\circ} \mathrm{c}$ and $100^{\circ} \mathrm{c}$ respectively until steady state conditions prevail. The temperature at A is suddenly raised to $20^{\circ} \mathrm{c}$ and at the same time that of B is lowered to $40^{\circ} \mathrm{C}$. Find the temperature distribution in the bar at time t.

OR
(24) A rod of 30 cm long has its ends A and B kept at $30^{\circ} \mathrm{c}$ and $90^{\circ} \mathrm{c}$ respectively until steady state temperature prevails. The temperature at each end is then suddenly reduced to zero temperature and kept so. Find the resulting temperature function $\boldsymbol{u}(\boldsymbol{x}, \boldsymbol{y})$ $\operatorname{taking} x=0$ at A .

