Reg. No.:
Name: \qquad
FIRST SEMESTER B.TECH DEGREE EXAMINATION, JANUARY 2016

Course Code: MA101

Course Name: CALCULUS
Max. Marks: 100
Duration: 3 Hours

PART A

Answer all questions, each question carries 3 marks

1. Show that the series $\sum_{\mathbf{k}=1}^{\infty} \frac{\cos \mathbf{k}}{\mathbf{k}^{2}}$ is convergent.
2. Find $\frac{d}{d x}\left(e^{x} \operatorname{sech}^{-1} \sqrt{x}\right)$
3. Identify the surfaces $5 x^{2}-4 y^{2}+20 z^{2}=0$
4. Equation of a surface in spherical coordinates is $\rho=\sin \theta \sin \varphi$

Find the equation of this surface in rectangular coordinates.
5. Given $f=e^{x}$ sing; show that the function satisfies the Laplace equation $f_{x x}+f_{y y}=0$
6. Let $w=4 x^{2}+4 y^{2}+z^{2}$; where $x=\rho \sin \varphi \cos \theta, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi$ Find $\frac{\partial w}{\partial \rho}$ using chain rule.
7. A particle moves along a circular helix in 3-space so that its position vector at time t is $r(t)=(4 \cos \pi t) i+(4 \sin \pi t) j+t k$ Find the displacement of the particle during theinterval $1 \leq t \leq 5$.
8. Find the tangent to the curve $\mathrm{r}(t)=\left(t^{2}-1 \vec{l}+t \vec{\jmath}\right.$ at $t=1$
9. Evaluate $\int_{1}^{a} \int_{1}^{b} \frac{d y d x}{x y}$
10. The line $y=2-x$ and the parabola $y=x^{2}$ intersect at the points $(-2,4)$ and $(1,1)$.If R is the region enclosed by $\mathrm{y}=2-\mathrm{x}$ and $\mathrm{y}=\mathrm{x}^{2}$, then find $\iint_{R}(\mathrm{y}) \mathrm{dA}$

PART B

Answer any 2 complete questions each having 7 marks

11. Find the radius of convergence and interval of convergence of the series $\sum_{k=1}^{\infty} \frac{(x-5)^{k}}{k^{2}}$.
12. Test the convergence of $\frac{x}{12}+\frac{x^{2}}{23}+\frac{x^{3}}{34}+\cdots \ldots \ldots$
13. Find the Taylors series of $\frac{1}{x}$ about $\mathrm{x}=1$.

Answer any 2 complete questions each having 7 marks

14. Find the domains of (i) $f(x, y)=\sqrt{25-x^{2}-y^{2}-z^{2}} \quad$ (ii) $f(x, y)=\ln \left(x-y^{2}\right)$ and describe them in words.
15. Find the limit of $f(x, y)=\frac{-x y}{x^{2}+y^{2}}$ as $(\mathrm{x}, \mathrm{y}) \rightarrow(0,0)$ along (i) the X -axis, (ii) the Y - axis the line $\mathrm{y}=\mathrm{x}$.
16. Find the spherical and cylindrical coordinates of the point that has rectangular coordinates $(x, y, z)=(4,-4,4 \sqrt{6})$

Answer any 2 complete questions each having 7 marks

17. Locate all relative maxima, relative minima and saddle point if any,of $f(x, y)=y^{2}+x y+$ $4 y+2 x+3$
18. Let f be a differentiable fuction of 3 varaiables and suppose that $W=f(x-y, y-z, z-x)$. Prove that $\frac{\partial w}{\partial x}+\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z}=0$.
19. Find the local linear approximation $L(x, y)$ to $f(x, y)=\frac{1}{\sqrt{x^{2}+y^{2}}}$ at the point $P(4,3)$. Compare the error in approximating ' f ' by L at the specified point $\mathrm{Q}(3.92,3.01)$ with the distance between P and Q .

Answer any 2 complete questions each having 7 marks

20. Findy (t) where $\mathrm{y}^{\prime \prime}(\mathrm{t})=12 \mathrm{t}^{2} \mathrm{i}-2 \mathrm{tj}, \mathrm{y}(0)=2 \mathrm{i}-4 \mathrm{j}, \mathrm{y}^{\prime}(0)=0$.
21. Find the arc length parametrization of the line $x=1+t, y=3-2 t, z=4+2 t$ that has the same direction as the given line and has reference point $(1,3,4)$.
22. Find the directional derivative of $f(x, y)=e^{x} \sec y$ at $P(0, \pi / 4)$ in the direction of $P Q$ where Q is the origin.

Answer any 2 complete questions each having 7 marks

23. Find the area bounded by the x -axis, $y=2 x$ and $x+y=1$ using double integration.
24. Use a triple integral to find the volume of the solid within the cylinder $x^{2}+y^{2}=9$ and between the planes $\mathrm{z}=1$ and $\mathrm{x}+\mathrm{z}=5$.
25. Sketch the region of integration and evaluate the integral $\int_{1}^{2} \int_{y}^{y^{2}} d x d y$ by changing the order of integration.
