\qquad Name: \qquad

APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

FIRST SEMESTER B.TECH DEGREE SPECIAL EXAMINATION, AUGUST 2016
Course Code: MA101
Course Name: CALCULUS
Max. Marks: 100
Duration: 3 Hours

PART A

Answer ALL questions. Each question carries 3 marks

1. Find derivative of $y=\sinh (4 x-8)$
2. Test whether the series converges or diverges, $\sum_{k=1}^{\infty} \frac{k}{2^{k}}$
3. Identify the surface $z=y^{2}-x^{2}$
4. Convert from rectangular to spherical co-ordinates, $(2 \sqrt{3}, 2,-4)$
5. Find $\frac{\partial Z}{\partial x}$ and $\frac{\partial Z}{\partial y}$ if $Z=\cos \left(x y^{3}\right)$
6. Show that $\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial^{2} z}{\partial y \partial x}$ if $\mathrm{z}=x^{2} \mathrm{y}+5 y^{3}$.
7. Evaluate $\int_{0}^{2}\left(2 t \hat{\imath}+3 t^{2} \hat{\jmath}\right) d t$
8. Find the arc length of the parametric curve $\mathrm{x}=\mathrm{e}^{\mathrm{t}}, \mathrm{y}=\mathrm{e}^{-\mathrm{t}} \quad, \mathrm{z}=\sqrt{2} \mathrm{t}, 0 \leq \mathrm{t} \leq 1$.
9. Evaluate $\int_{1}^{3} \int_{2}^{4}(40-20 x y) d y d x$
10. Evaluate $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1}(x y z \quad) d x d y d z$

PART B

Answer any 2 complete questions each having 7 marks
11. Test the convergence of the series $\sum_{k=1}^{\infty} \frac{\mathrm{k}(\mathrm{k}+3)}{(\mathrm{k}+1)(\mathrm{k}+2)(\mathrm{k}+5)}$
12. Show that $\sinh ^{-1} x=\ln \left(x+\sqrt{x^{2}+1}\right)$
13. Find the Taylor series of $\frac{1}{x+2}$ about $\mathrm{x}=1$.

Answer any 2 complete questions each having 7 marks

14. Express the equation $x^{2}-y^{2}-z^{2}=0$ in cylindrical and spherical coordinates.
15. Evaluate $\lim _{(x, y) \rightarrow(0,0)}\left[\sin \quad\left(\sqrt{x^{2}+y^{2}}\right)\right] /\left(x^{2}+y^{2}\right) \quad$ by converting to polar coordinates.
16. Show that the functions $f(x, y)=3 x^{2} y^{5}$ and $f(x, y)=\sin \left(3 x^{2} y^{5}\right)$ are continuous everywhere.

Answer any 2 complete questions each having 7 marks

17. Let $\mathrm{L}(\mathrm{x}, \mathrm{y})$ denote the local linear approximation to $\mathrm{f}(\mathrm{x}, \mathrm{y})=\sqrt{x^{2}+y^{2}}$ at the point $(3,4)$. Compare the error in approximating $\mathrm{f}(3.04,3.98)=\sqrt{(3.04)^{2}+(3.98)^{2}} \quad$ by L (3.04, $3.98)$ with the distance between the points $(3,4)$ and $(3.04,3.98)$.
18. Suppose that $w=x^{2}+y^{2}-z^{2}$ and $\mathrm{x}=\rho \sin \phi \cos \theta, \mathrm{y}=\rho \sin \phi \sin \theta, \mathrm{z}=\rho \cos \phi$. Use appropriate form of the chain rule to find $\frac{\partial w}{\partial \rho}$ and $\frac{\partial w}{\partial \theta}$
19. Locate the relative extrema and saddle points of $f(x, y)=3 x^{2}-2 x y+y^{2}-8 y$

Answer any 2 complete questions each having 7 marks

20. Let $f(x, y)=x^{2} e^{y}$. Find the maximum value of a directional derivative at $(-2,0)$ and find the unit vector in the direction in which the maximum value occur.
21. Find the angle between the tangent lines to the graphs of $r_{1}(t)=\tan ^{-1} t i+\sin t j+t^{2} k$ $r_{2}(t)=\left(t^{2}-t\right) i+(2 t-2) j+\log t k$
22. Suppose that a particle moves through 3-space so that its position vector at time

$$
\mathrm{t} \text { is } \mathrm{r}(\mathrm{t})=\mathrm{ti}+\mathrm{t}^{2} \mathrm{j}+\mathrm{t}^{3} \mathrm{k} .
$$

Find the scalar tangential and normal components of acceleration at time $t=1$.

Answer any 2 complete questions each having 7 marks

23. Use a polar double integral to find the area enclosed by the circle $r=\sin \theta$
24. Use a triple integral to find the volume of the solid within the cylinder $x^{2}+y^{2}=9$ and between the planes $z=1$ and $z=5$
25. Evaluate $\iint_{R} \frac{x-y}{x+y} d A$ where R is the region enclosed by $x-y=0, x-y=1, x+y=1$, $x+y=3$
