(Pages: 2)

Reg. No..... Name.....

B.TECH. DEGREE EXAMINATION, MAY 2014

Sixth Semester

Branch: Electronics and Communication Engineering

EC 010 606 L01 – DATA STRUCTURES AND ALGORITHMS (Elective – I) (EC)

(New Scheme – 2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions.

Each question carries 3 marks.

- 1. Explain how circular queue overcomes the disadvantage posed by queue data structure.
- 2. Explain binary search tree property.
- 3. Why is insertion sort the most efficient when the input list is almost in sorted order?
- 4. What is dynamic programming?
- 5. What is an NP-complete problem?

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Write an algorithm to sort the elements of a linked list.
- 7. Write an algorithm to insert an element into a binary search tree.
- 8. Discuss insertion sorting algorithm. Illustrate its working with an example.
- 9. Explain greedy strategy for problem solving. Give an example for a problem that can be solved using greedy strategy.
- Analyse binary search algorithm.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each question carries 12 marks.

11. Discuss an algorithm to add two polynomials represented using linked lists.

Or

- 12. Discuss an algorithm to implement two stacks using a single one dimensional array.
- 13. Illustrate with the help of an example, graph traversal using Depth First Search

Or

- 14. Discuss about the different representations of a binary tree and a graph.
- 15. Discuss heap sort algorithm. Illustrate its working with the help of an example.

Or

- 16. Discuss radixsort algorithm. Illustrate its working with the help of an example.
- 17. Explain the different notations used to denote the time complexity of an algorithm.

Or

- 18. Explain how divide and conquer approach is used to perform merge sort.
- 19. Explain travelling salesman problem. Suggest one method of solving it.

Or

20. Analyse the performance of bubble sort, quick sort and merge sort.

 $(5 \times 12 = 60 \text{ marks})$