Reg.	No

Name.....

B.TECH. DEGREE EXAMINATION, MAY 2016

Fourth Semester

Branch: Automobile / Mechanical / Production Engineering

AU 010 406 / ME 010 406 / PE 010 406 - ELECTRICAL TECHNOLOGY [AU, ME, PE]

(New Scheme - 2010 Admission onwards)

[Regular/Improvement/Supplementary]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions. Each question carries 3 marks.

- 1. Define critical field resistance and critical speed.
- 2. What is the necessity of starter for DC Motor?
- 3. How starting torque is increased in slip ring induction motor?
- 4. Draw and explain the mechanical characteristics of DC series motor.
- 5. Mention the application of Dielectric heating.

 $(5 \times 3 = 15 \text{ marks})$

Part B

Answer all questions.

Each question carries 5 marks.

- 6. Explain the reasons for voltage drop in shunt generator when loaded.
- 7. Explain Swinburne's Test in DC Machines.
- 8. Explain the types of rotor construction in Alternator.
- 9. Discuss the factors that affect the choice of motor for a particular application.
- 10. Explain the types of power diodes.

 $(5 \times 5 = 25 \text{ marks})$

Part C

Answer all questions.

Each full question carries 12 marks.

- 11. (a) Explain the load characteristics of DC series generator.
 - (b) A shunt generator has FL current of 196 A at 220 V. The armature and shunt field resistances are 0.15 Ω and 55 Ω respectively. The stray losses are 1000 W. Calculate the FL efficiency.

(6 + 6 = 12 marks)

- 12. (a) Derive the condition for maximum efficiency in DC generator.
 - (b) A short shunt compound generator has armature, series and shunt filed resistances of 0.15 Ω , 0.1 Ω and 110 Ω respectively. It supplies a load of 4 kw at 250 V. Find the generated e.m.f. if the contract drop/brush is 1 V.

(6 + 6 = 12 marks)

- 13. (a) Draw and explain the equivalent circuit of transformer.
 - (b) A 25 KVA, 2000/200 V single-phase transformer has iron and full load copper losses of 400 w and 500 w respectively. Calculate:
 - (i) Efficiency at 80% full load, 0.9 pf.
 - (ii) Primary and secondary FL currents.

(6 + 6 = 12 marks)

Or

- 14. (a) Explain the various methods of cooling of transformers.
 - (b) SC test results of a 20 KVA, 2200/220 V, 1 φ transformer is 86 V, 10.5 A, 360 W on HV side. Calculate the % Regulation at FL, 0.8 pf leading.

(6 + 6 = 12 marks)

- 15. (a) Derive the EMF equation of Alternator.
 - (b) Explain why synchronous motor is not self starting and the methods of starting.

(6 + 6 = 12 marks)

Or

- 16. (a) Draw and explain the Torque slip characteristics of 3-phase induction motor.
 - (b) Discuss different types of single-phase motors and their applications.

(6 + 6 = 12 marks)

- 17. (a) Explain individual and group drive with example.
 - (b) Explain Regenerative braking.

(8 + 4 = 12 marks)

Or

- 18. (a) Discuss the advantages of electric traction and what are the different systems for track electrification.
 - (b) Explain Plugging.

(8 + 4 = 12 marks)

19. Explain the principle of operation and two transistor analogy of SCR.

Or

20. With block schematic, explain Resistance welding scheme.