F 3110

(Pages: 2)

Reg. No....

Name.....

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Third Semester

Branch: Mechanical Engineering/Automobile Engineering

THERMODYNAMICS (M,U)

(Prior to 2010 Admissions—Old Scheme)

[Supplementary/Mercy Chance]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions. Each question carries 4 marks.

- 1. Differentiate between closed system and isolated system.
- 2. Explain (i) chemical and (ii) thermal equilibrium.
- 3. How does the resistance thermometer measure temperature?
- 4. What is meant by effective pressure? How is it measured?
- 5. How is entropy related to molecular disorder in a system?
- 6. Why is the second law called a directional law of nature?
- 7. What is meant by availability?
- 8. Why is the Joule-Thomson coefficient zero for an ideal gas?
- 9. What do you understand by triple point?
- 10. Why cannot a throtting calorimeter measure the quality if the steam is very wet?

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.
Each question carries 12 marks.

11. Distinguish between the terms 'change of state' 'path' and 'process'. What is a thermodynamic cycle?

Or

12. (a) Discuss the different types of pressure transducers.

(5 marks)

Turn over

(b) A turbine is supplied with steam at a gauge pressure of 1.4 MPa. After expansion in the turbine the steam flows into a condenser which is maintained at a vacuum of 710 mm Hg. The barometric pressure is 772 mm Hg. Express the inlet and exhaus steam pressures in Pascals (absolute). Take density of mercury as 13.6 × 10³ kg/m³.

(7 marks)

13. Account for the existence of two values for specific heat of a gas, and derive the relation between them and the characteristic gas constant.

Or

- 14. (a) Define enthalpy. How is it related to internal energy? (6 marks)
 - (b) State and explain Joule's law of internal energy for an ideal gas. (6 marks)
- 15. Derive the Clausius inequality and explain its significance.

Or

16. A reversible heat engine receives equal quantity of heat from two thermal reservoirs at temperature T_1 and T_2 , and rejects heat to a heat sink at T_3 . Presuming that efficiency of this engine is ' α ' times the efficiency of a reversible engine, absorbing the same amount of heat only from reservoir at T_1 , and rejecting heat to sink at T_3 , show that

$$\alpha = \frac{1}{2} \left\lceil \frac{T_2 - T_3}{T_1 - T_3} + \frac{T_2}{T_3} \right\rceil \times \frac{T_1}{T_2}$$

17. Air enters a compressor in steady flow at 140 KPa, 17°C and 70 m/s and leaves it at 350 KPa, 127°C and 110 m/s. The environment is at 100 KPa, 7°C. Calculate per kg of air (a) the actual amount of work required, (b) the minimum work required, and (c) the irreversibility of the process.

Or

- 18. Over a certain range of pressures and temperature the equation of a certain substance is given by the relation $V = \frac{RT}{P} \frac{C}{T^3}$, where C is a constant. Derive an expression for (a) the change of enthalpy and (b) the change of entropy of this substance in an isothermal process.
- 19. Steam initially at 1.5 MPa, 300°C expands reversibility and adiabatically in a steam turbine to 40°C. Determine the ideal work output of the turbine per kg of steam.

Or

- 20. (a) Derive the expression for properties of mixture of gases based at Dalton's law. (6 marks)
 - (b) Show that for an ideal gas, the slope of the constant volume line on the T-s diagram is more than that of the constant pressure line.

(6 marks)

 $(5 \times 12 = 60 \text{ marks})$