(Pages: 3)

Reg. No.

B.TECH. DEGREE EXAMINATION, NOVEMBER 2014

Third Semester

Branch—Electrical and Electronics Engineering
ELECTROMAGNETIC THEORY (E)

(Prior to 2010 Admissions—Old Scheme)

[Supplementary/Mercy Chance]

Time: Three Hours

Maximum: 100 Marks

Part A

Answer all questions briefly. Each question carries 4 marks.

- 1. Show how a point P is represented in a spherical co-ordinate system?
- 2. State the various types of charge distributions, giving one example of each.
- 3. What is divergence? State expressions for divergence in various co-ordinate system.
- 4. Define an electric dipole. State expression of \overline{E} due to an electric dipole.
- 5. Derive an equation for the capacitance per metre length of two long parallel conductors with radius R separated by distance *d* in air.
- 6. Explain the concept of field polarization in dielectrics.
- 7. Explain the concept of steady magnetic field and conduction current.
- 8. A charged particle passes through a magnetic field without experiencing any force. What can you conclude about the magnetic field ?
- 9. Explain how Faraday's law can be used to extend one of the Maxwell's equations from static to time-varying electromagnetic fields.
- 10. If H = 5.5 mA/m in a medium with ϵ_r = 3.3 and $\mu = \mu_o$ at 300 MHz, calculate the average Poynting vector.

 $(10 \times 4 = 40 \text{ marks})$

Part B

Answer all questions.

Each full question carries 12 marks.

11. (a) Given the vector field $\overline{W} = 2x^2y \,\overline{a}_x - 2(z-x) \,\overline{a}_y + 3xyz \,\overline{a}_z$. Find (i) \overline{W} at P (2, -3, 4); (ii) Unit vector in the direction of \overline{W} at p; (iii) The equation of surface on which the $\overline{W} = 100$; and (iv) the y-co-ordinate of Q (-3, y, 5) such that $|\overline{W}|$ at Q |=100 and y>0.

Turn over

(b) Find the electric field intensity at a point (0, 0, 5) meter due to two charges Q_1 = 0.35 μC at (0, 4, 0) and Q_2 = -0.55 μC at (3, 0, 0).

Or

- 12. (a) A uniform line charge of 20 nc/m is located at y = 3, z = 6 in free space. Find \overline{E} at:
 - (i) (2, -1, 4) meter; (ii)at the point in z = 0 plane where the direction of \overline{E} is $0.33 \ \overline{a}_{\nu} 0.66 \ \overline{a}_{z}$.
 - (b) A dipole of moment $\bar{p}=6~\hat{a}_z~\mu c/m$ is located at the origin in free space. Find electric field intensity \bar{E} at (4, 20°, 0°).
- 13. (a) Verify that the expression for the potential due to an electric dipole satisfies the Laplace equation.
 - (b) Determine the electric field intensity of an infinitely long, straight, line charge of a uniform density λ in air.

Or

- 14. (a) Derive Laplace's and Poisson's equations in relation with electrostatic field.
 - (b) Given the potential field $V = 50x^2yz + 20y^2$ volts in free space. Find: (i) V at P₁(1, 2, 3); and (ii) E_p.
- 15. (a) Explain the condition at boundary between two dielectrics.
 - (b) A parallel plate capacitor of $12 \text{ cm} \times 12 \text{ cm}$ and d = 1 cm is charged to a potential of 1 kV with air as dielectric. Find the energy stored.

Or

- 16. Derive the expression for capacitance of a coaxial cable using Laplace's equation.
- 17. (a) Calculate the force per unit length between two parallel infinite conductors carrying current I Amp;-(i) in the same direction; and (ii) in the opposite direction.
 - (b) Calculate the inductance of a solenoid, if the radius is 5 cm, length is 40 cm, N = 500, μ_r = 1000 and I = 10A.

Or

- 18. (a) State and explain Ampere's circuital law.
 - (b) Two narrow circular coils A and B having a common axis, are placed 10 cm apart. Coil A has 10 turns of radius 5 cm with a current of 1.0 A passing through it. If the magnetic field at the centre of the coil A to be zero, what current should be passed through the coil B, if coil B has single turn with radius 7.5 cm?
- 19. (a) Starting from Maxwell's equations, derive an expression for wave equation in \bar{H} for uniform plane waves in a conducting medium for sinusoidal time variations of the fields.
 - (b) Write the phasor form of a uniform plane wave having a frequency of 1 GHz that is travelling in the +x direction in a medium of $\epsilon = 12 \epsilon_0$ and $\mu = \mu_0$.

Or

- 20. (a) Explain the significance of Poynting vector theorem. Obtain complex Poynting vector theorem.
 - (b) Explain the concept of uniform plane wave.

 $(5 \times 12 = 60 \text{ marks})$

