| Course<br>code | Course Name                                                                                          | L-T-P-<br>Credits              | Year of<br>Introduction            |  |  |  |
|----------------|------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|--|--|--|
| <b>CH208</b>   | CHEMISTRY FOR PROCESS                                                                                | 3-0-0-3                        | 2016                               |  |  |  |
|                | ENGINEERING -II                                                                                      |                                |                                    |  |  |  |
| -              | site: CH207 Chemistry for process engineering                                                        | g - I                          |                                    |  |  |  |
|                | Dbjectives                                                                                           |                                |                                    |  |  |  |
|                | impart the knowledge of analytical and physic                                                        | cal chemistry re               | levant to the field                |  |  |  |
| -              | plication of Chemical Engineering                                                                    | CALA                           | NA                                 |  |  |  |
|                | comprehend the contemporary techniques in a                                                          | -                              | hysical chemistry                  |  |  |  |
| Syllabus       | at are applied to many areas of chemical resear                                                      | Ch                             | A                                  |  |  |  |
| Electro-a      | nalytical chemistry, potentiometry,                                                                  | voltammetry,                   | electrogravimetry,                 |  |  |  |
|                | emical sensors; Mass spectrometry, atomic al                                                         |                                | <b>U</b>                           |  |  |  |
|                | ace analysis techniques; Phase equilibria,                                                           |                                |                                    |  |  |  |
|                | ic conductions and electrolytic processes; A                                                         |                                |                                    |  |  |  |
| -              | and surfactants; Nuclear stability, radioa                                                           | -                              | -                                  |  |  |  |
|                | ns of nuclear chemistry.                                                                             | 5 / 5                          |                                    |  |  |  |
| Expected       | Outcome                                                                                              |                                |                                    |  |  |  |
| At the end     | d of the course students will be able to:                                                            |                                |                                    |  |  |  |
|                | ibe basic principles of electrochemistry                                                             |                                |                                    |  |  |  |
|                | narize spectroscopy, surface analysis technique                                                      | s and solubility               | behaviour                          |  |  |  |
|                | ret phase equilibria and electrochemical equ                                                         |                                |                                    |  |  |  |
| _              | ng applications.                                                                                     |                                |                                    |  |  |  |
| Referenc       | es:                                                                                                  | 1. 1.                          |                                    |  |  |  |
| 1. D.          | A. Skoog, D.M. West, F.J. Holler, S.R. Crouch                                                        | h. Fundamentals                | of Analytical                      |  |  |  |
|                | nemistry, 8 <sup>th</sup> edition, Saunders College Pub., 2                                          |                                | ,                                  |  |  |  |
|                | H. Willard, L.L. Merritt Jr. J.A. Dean, F. A. Settle Jr., 7 <sup>th</sup> ed., Wadsworth             |                                |                                    |  |  |  |
|                | iblishing Co., 1988.                                                                                 |                                |                                    |  |  |  |
|                | R. Chatwal, S.K. Anand, Instrumental Method                                                          | ls of Chemical A               | analysis, 5 <sup>th</sup> edition, |  |  |  |
|                | malaya, 2007.                                                                                        |                                | 1                                  |  |  |  |
|                | R. Puri, L.R. Sharma, M.S. Pathania, Principle<br>blishing Co., 2013.                                | es of Physical C               | nemistry, Vishal                   |  |  |  |
|                | Koryta, J. Dvorak, L. Kavan. Principles of elec                                                      | ctrochemistry 2                | <sup>nd</sup> edition John         |  |  |  |
|                | iley & Sons, Inc. 1993.                                                                              | ettoeneninstry, 2              | cultion, john                      |  |  |  |
|                | Harvey, Modern analytical chemistry, McGra                                                           | w-Hill, Inc. 200               | 0.                                 |  |  |  |
| 7. J.          | A. C. Broekaert, Analytical Atomic Spectrome                                                         | etry with Flames               | and Plasmas,                       |  |  |  |
|                | iley-VCH, 2002.                                                                                      |                                |                                    |  |  |  |
|                | Atkins, J. de Paula, Elements of Physical Cher                                                       | mistry, 5 <sup>th</sup> editio | on, Oxford                         |  |  |  |
|                | niversity Press, 2009.                                                                               |                                | 1 6 1 1 4 4                        |  |  |  |
|                | J. Gellings, H. J. M. Bouwmeester (editors), T                                                       | ne CRC handbo                  | ook of solid state                 |  |  |  |
|                | ectrochemistry, CRC Press, Inc., 1996.<br>Wang, Analytical Electrochemistry, 2 <sup>nd</sup> edition | n Wiley-VCH                    | 2000                               |  |  |  |
|                | Adamson, A. P. Gast, Physical Chemistry of                                                           |                                |                                    |  |  |  |
|                | terscience, 1997.                                                                                    |                                |                                    |  |  |  |

| 13. W. | Myers, Surfaces, Interfaces, and Colloids, 2 <sup>nd</sup> edition, Wiley-V<br>D. Loveland, D. J. Morrissey, G. T. Seaborg, Modern nuclear<br>iley & Sons, Inc., 2006.                                                                                                                                                                                                                                                                                                                                                                      |        |                       |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|
| 14. G. | Friedlander, J. W. Kennedy, E. S. Macias, J. M. Miller, Nucle liochemistry, 3 <sup>rd</sup> edition, John Wiley & Sons, Inc. 1981.                                                                                                                                                                                                                                                                                                                                                                                                          | ar and |                       |
|        | Course Plan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |                       |
| Module | APIAR Contents   KAIA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Hours  | Sem.<br>Exam<br>Marks |
| Ι      | Electro-analytical chemistry<br>Potentiometry – Principle, determination of equivalence<br>points for acid–base, complexation, redox, and<br>precipitation titrations. Voltammetry -Residual current,<br>migration current, diffusion current (Ilkovic equation) and<br>limiting current. Polarographic waves (anodic and<br>cathodic), Half wave potentials. Dropping mercury<br>electrode (DME). Anodic stripping voltammetry.<br>Amperometry. Coulometric titrations. Electrogravimetry.                                                 | 6      | 15%                   |
| II     | Spectroscopic and surface analysis technique<br>Principle, instrumentation and applications of mass<br>spectrometry, atomic absorption spectroscopy (AAS),<br>atomic emission spectroscopy (AES), X–ray photoelectron<br>spectroscopy (XPS), auger electron spectroscopy (AES),<br>scanning electron microscopy (SEM), scanning tunneling<br>electron microscopy (STEM)and atomic force microscopy<br>(AFM).                                                                                                                                | 6      | 15%                   |
|        | FIRST INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1      |                       |
| III    | Phase equilibria<br>Nernst distribution law (thermodynamic derivation),<br>association and dissociation of solute, chemical<br>combination of solute with solvent. Application of Nernst<br>distribution law, principles of solvent extraction, Parke's<br>process. Numerical problems of distribution law. Solubility<br>of partially miscible liquids. Critical solution temperature.<br>Phenol – water, triethylamine – water and nicotine – water<br>systems. Distillation of immiscible liquids – steam<br>distillation – applications | 7      | 15%                   |
| IV     | <b>Electrochemistry</b><br>Conductivity of electrolytes, Arrhenius theory of weak<br>electrolytes, Kohlrausch law, Debye–Hückel theory (basics                                                                                                                                                                                                                                                                                                                                                                                              | 7      | 15%                   |

|                         | only). Transport (transference) number,Hittorf's method.<br>Concentration cells (with and without transference), Liquid<br>junction potential. Cathodic hydrogen evolution - hydrogen<br>overvoltage. Anodic oxygen evolution, Cathodic Oxygen<br>reduction. Electrochemical sensors (Biosensors for<br>glucose, ethanol and urea, gas sensors for Oxygen and<br>CO <sub>2</sub> ).Electrochromism and electrochromic devices (e.g.                                          |   |     |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|                         | tungsten oxide).<br>SECOND INTERNAL EXAMINATION                                                                                                                                                                                                                                                                                                                                                                                                                              | M |     |
| V                       | Adsorption and Surface Chemistry<br>Adsorption Isotherms – Langmuir, Freundlich and BET<br>equations (no derivation for BET). Determination of<br>surface area using BET equation. Gibbs surface excess.<br>Gibbs adsorption isotherm – derivation. Colloids –<br>classification, preparation and purification. Protective<br>colloids. Zeta potential, Donnan membrane equilibrium.<br>Dorn effect. Emulsion – properties and applications.<br>Surfactants - types and uses | 8 | 20% |
| VI                      | Nuclear and radiochemistry         Nuclear stability and radioactivity, types of radioactive decays. Binding energy and decay schemes, first order decay expressions. Consecutive decays, transient & secular equilibria. Nuclear reaction cross-section.Liquid drop model of nuclear fission and fissionability parameters. Neutron activation analysis. Medical isotopes and treatment. Tracers, isotope separation, dating techniques. Isotope effects.                   | 8 | 20% |
| END SEMESTEREXAMINATION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |     |

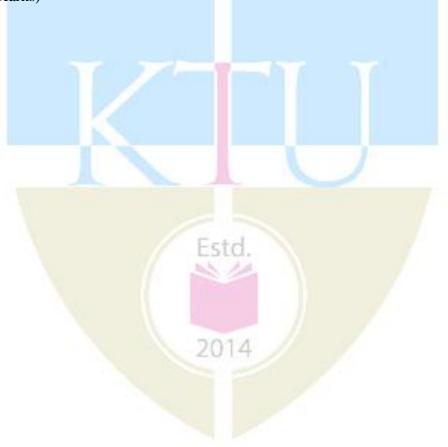
## **Evaluation Scheme**

- Internal Evaluation: Total Marks: 50
  - (i) Total Marks for Assignment/Seminar/Project/Case study or any other appropriate tool used for the evaluation of the course outcomes: 10
     A minimum of above two tools shall be used. If more than 2 tools are used, proportionate change shall be made in the marks so that the total contribution of marks for item (i) above remains at 10.
  - (*ii*) *Marks for Tests: Two tests each carrying 40% weightage shall be conducted with total contribution of* **40 marks**.

| • | <b>External Evaluation</b> | : | University Examination |
|---|----------------------------|---|------------------------|
|   | Maximum Marks              | : | 100                    |
|   | Exam Duration              | : | 3 Hours                |

## **Question Paper Pattern:**

There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.


(2 x15= 30 Marks)

There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15= 30 Marks)

There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together.

(2 x20= 40 Marks)

