Course code	Course Name	L-T-P- Credits	Year of Introduction
CH484	FUEL CELL TECHNOLOGY	3-0-0-3	2016

Prerequisite : Nil Course Objectives

• To expose the students to the fundamental knowledge required in the development of fuel cell technology.

Syllabus

Introduction to Fuel Cells and Fuel Cell Technology, General Thermodynamics, Reaction Kinetics, Charge and Mass Transport, Overview of Fuel Cell Types, Stack Design, Fuel Cell Characterization, Hydrogen Economy.

Expected Outcome

At the end of the course the students will be able to:

- 1. Know the fundamentals of electrochemistry, thermodynamics, fluid mechanics, and heat and mass transfer, appropriate for the design or review of components of fuel cells and fuel cell systems.
- 2. Analyze the fuel cell technology and compare different types of fuel cell systems.
- 3. Calculate the various losses in fuel cells and analyze the fuel cell power plant subsystems.
- 4. Defend the significance of fuel cell technology in the new global energy scenario.
- 5. Distinguish the expectances of hydrogen as a fuel and energy vector in the context of renewable energy.

References Books:

- 1. Andreas Zuttel; Andreas Borgschulte; Louis Schdaptach, Hydrogen as a future energy carrier, Wiley-VCH Verlag GmbH & Co., KGaA, Weinheim, 2008.
- 2. Costamagna, P.; Srinivasan, S, J Power Sources 2001, 102, 242-269...
- 3. Frano Barbir. PEM Fuel Cells: Theory and Practice. Elsevier, 2005
- 4. Fuel Cell Handbook,7the Edn., EG & G Technical Services, Nov 2004
- 5. Hordeski, M. F. Alternative Fuels: The Future of Hydrogen, The Fairmont Press: Lilburn, GA, 2007.
- 6. Kordesch, K.; Simader, G. Fuel Cells and Their Applications. VCH: 1996
- 7. Larminie, J.; Dicks, A. Fuel Cell Systems Explained. John Wiely & Sons Ltd: Chichester, 1999.
- 8. Ryan P. O'Hayre, Suk-Won Cha, Whitney Colella & Fritz B. Printz, Fuel Cell Fundamentals, John Wiley & Sons, Inc., New Jersey, 2006
- 9. Vielstich, W, Gasteiger, H. A. Lamm, A. (Eds):Handbook of Fuel Cells-Fundamentals, Technology and Applications. John Wiely & Sons Ltd: NY, 2003; Vols1-4

Course Plan					
Module	Contents	Hours	Sem. exam marks		
I	Introduction: Fuel Cell, Brief History of fuel cells, Types of Fuel Cells, Working of a PEM fuel Cell, Fuel Cell and conventional processes – comparison, Energy & power relations, units, Application scenarios, Advantages and disadvantages.	7	15%		

	General Thermodynamics: Enthalpy-Heat potential of fuel, Gibb's free energy-Work potential of fuel,		
	Reversible voltage - NERNST Equation, Voltage and P, T and concentration dependence – examples, Faraday's		
	Laws, Efficiency: thermodynamic, voltage and fuel.		
	Reaction Kinetics: Electrochemical reaction		
	fundamentals, electrode kinetics, Charge transfer and		
II	activations energy, Exchange current density - slow and		
	fast reactions, Potential and equilibrium - galvanic	N-7.4	150/
	potential, Reaction rate and potential - Butler Volmer	7	15%
	equation & Tafel equation, Electrocatalysts and reaction	AT	
	kinetics – typical exchange current densities, Electrode	AL	
	design basics	h. And	
	FIRST INTERNAL EXAMINATION		
	Charge and Mass Transport: Charge transport		
	resistances, voltage losses, Ionic and electronic		
	conductivites, Ionic conduction in different FC		
III	electrolytes: Aquesous, polymeric and ceramic, Diffusive	7	20%
	transport & voltage loss: Limiting current density,		
	Nerstian and kenetic effect, Convective transport: flow channels, gas diffusion / porous layer, gas velocity,		
	pressure, Flow channel configurations		
	Overview of Fuel Cell Types: PAFC, PEMFC, AFC,		
	MCFC, SOFC. Major Cell Components, Material	_	• • • •
IV	Properties, Processes and Operating Conditions of	7	20%
	PEMFC.		
	SECOND INTERNAL EXAMINATION		
	Stack Design: Sizing of a Fuel Cell Stack, Stack		
	Configuration, Uniform distribution of Reactants, Heat		
V	removal, Stack Clamping	7	15%
	Fuel Cell Diagnostics: Polarization Curve, Current	7	1070
	Interrupt, AC Impedance Spectroscopy, Pressure drop as		
	a diagnostic tool.		
	Fuel Cell System Design: Hydrogen-Oxygen Systems,	/	
	Hydrogen-Air Systems, Fuel Cell Systems with Fuel Processor, System Efficiency		
VI	Fuel Cells and Hydrogen Economy: Hydrogen Energy	7	15%
	Systems, Hydrogen Energy Technologies, Transition to		
	Hydrogen Economy		
	END SEMESTER EXAMINATION		

Question Paper Pattern

Maximum Marks: 100 Exam Duration: 3 Hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

 $(2 \times 15 = 30 \text{ Marks})$

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together.

 $(2 \times 20 = 40 \text{ Marks})$

Part C: There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

 $(2 \times 15 = 30 \text{ Marks})$

