Cou	Course Name	L-T-P- Credits	Yea Introd	r of uction			
CH4		3-0-0-3	20				
Prerequisite : NIL							
Cours	e Objectives						
	To impart the knowledge of systematic methods for the n of chemical process industries. To enable students to apply various techniques for pr	T 1 1		-			
	conserve material and energy requirement in chemical pro	And a later					
Excha	us s Integration and its Building Blocks, Heat Exchanger N nger Network, Integration of Reactor systems, Integration nger Network Synthesis						
Expec	ted Outcome						
• The students will be able to apply various techniques for process integration in order to conserve material and energy requirement in chemical process industries							
Refere							
1.	1. James M. Douglas, Conceptual Design of Chemical Process, McGraw Hill, New York, 1988.						
	Marsland, R. H., "A User's guide on process integration for the efficient use of energy",						
	Inst. of Chemical Engineers, London (1982). Mahmoud. M., El – Hawalgi, Process Integration -, Elsevier, 2006. Robin Smith, Chemical Process Design and Integration, John Wiley and Sons. Ltd., New Delhi, 2005.						
6. 7.	Uday. V. Shenoy, Heat Exchanger Network Synthesis, , Gulf Publishing Co, USA, 1995 Warren D. Seider, J. D. Seader and Daniel R. Lewin, Product & Process Design Principles, Wiley Publication.						
	Course Plan	4		a			
Mod ule	Contents		Hours	Sem. Exam Marks			
Ι	Process Integration and its Building Blocks Defin Process Integration, Areas of application and techniques for Process Integration, Role of thermodynamic laws.		7	15%			
II	Heat Exchanger Networking Heat Exchanger Networking Composite curve method, Problem table algorithm composite curve	0	7	15%			

FIRST INTERNAL EXAMINATION				
III	Targeting of Heat Exchanger Network Energy targeting, Area targeting, Number of units targeting, Shell targeting, cost targeting.	7	15%	
IV	Integration of Reactor systems Choice of Idealized reactor model and reactor performance. Reactor configurations: Temperature Control, Choice of Reactors. Heat Integration	7	15%	
	characteristics of reactors SECOND INTERNAL EXAMINATION	M		
V	Integration of Distillation systems Distillation sequencing, Heat Integration characteristics of Distillation column, appropriate placement of distillation column, various configurations for heat integration of distillation column.		20%	
VI	Mass Exchanger Network Synthesis Mass Exchanger Network, Minimum Mass Separating Agents (MSA), Mass exchange networks for minimum external MSA. Minimum Number of Mass Exchangers	7	20%	
END SEMESTEREXAMINATION				

Question Paper Pattern

Maximum Marks: 100

Exam Duration: 3 Hours

Part A: There shall be Three questions uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together. Estd

(2 x15 = 30 Marks)

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15= 30 Marks)

Part C: There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together.

(2 x 20 = 40 Marks)