Course code	Course Name	L-T-P Credits	Yea Introd	ar of luction				
CH469	MATHEMATICAL METHODS IN PROCESS ENGINEERING	3-0-0-3	20)16				
Prerequisit	Prerequisite : Nil							
Course objectives:								
1. To introduce different kinds of modelling equations in chemical engineering.								
2. To gain the ability to solve the above equations of linear or nonlinear algebraic,								
ordin	ary differential equations and partial differential equa	tions.	NA					
3. To appreciate the conditions of uniqueness of solutions of linear and nonlinear								
equat	ions.	CA						
4. To study the effect of system parameters on stability of nonlinear systems.								
Syllabus:	I INTIVED CIT	V						
Introduction	Introduction to modelling and simulation, vectors, matrices, Eigen values and Eigen vectors,							
solution met	solution methods for finite dimensional space (Algebraic Equations & Ordinary Differential							
Equations),	Equations), solution methods for infinite dimensional space (Partial Differential Equations),							
Uniqueness	conditions for Linear and Nonlinear Systems, Linear	Stability a	and Limit	Cycles				
Bifurcation	Bifurcation Theory.							
Expected outcome:								
i C	omprehend the behaviour of chemical engineering sy	stem from	model eq	mations				
i. Understand the basis for each mathematical technique to solve the model								
	ulations							
iii Follow the models and simulation methods to analyse chemical engineering								
ni. 14	problems							
iv A	course the ability to use the simulation packages with	a good ur	nderstandi	ng of				
m m	athematics behind it	i u goou ui	laoistaila	ing or				
Text book:	Text book.							
• \$. Pushpavanam, "Mathematical Methods in Chemica	l Engineer	ring", Pre	ntice				
H	Hall of India Pvt. Ltd., 1998.	0	0,					
Eated								
Reference books:								
1. Gilb	ert Strang, "Linear Algebra and Applications", Holde	en Dav Pul	olishers.					
2 Irvin Kreyszig "Advanced Engineering Mathematics" New Age International (Pvt)								
Ltd New Delhi								
3. T.K	3 T K V Ivengar B Krishna Gandhi et al "Mathematical Methods" S Chand and							
Com	pany.		, ~. ~ ~					
Course plan								
				Sem.				
Module	Contents		Hours	Exam				
				Marks				
	Introduction to: Modelling, types of modelling, lin	ear and						
	non-linear equations, homogeneous and heterog	equations, homogeneous and heterogeneous						
т	equations, simulation and types of sim	ulation,	5 150/					
L	examples for modelling equations in chemical and	neering	3	13%				
	for: linear and nonlinear - algebraic ordinary diff	ferential						
	equation and partial differential equation.	ci cintiai						
	1							

П	Vectors, vector spaces, Metrics, Norms, Inner products, Linear dependence anddimension. Gram- Schmidt Orthonormalisation. Matrices, Eigen values, Eigen vectors, Fredholm alternative. Applications to Chemical Engineering: Linear algebraic equations.	8	15%			
FIRST INTERNAL EXAMINATION						
III	Applications to Chemical Engineering: Systems of first order homogeneous Ordinary Differential Equations (ODE) (IVP). First order non homogeneous ODE (IVP). Partial differential Equations: Classification of Second order partial differential equations. Linearity and superposition. Sturm- Louiville Theory	8	15%			
IV	Infinite dimensional spaces, Eigen value problems, Classical Eigen value problems, Fourier Series, Rayleigh's Quotient. Separation of variables and Fourier Transforms: Rectangular Cartesian Coordinates. Cylindrical coordinates, Spherical coordinates, Fourier series and finite Fourier Transforms. Laplace Transform. Green's Function: Ordinary Differential Equations.	8	15%			
SECOND INTERNAL EXAMINATION						
V	Uniqueness conditions for Linear and Nonlinear Systems. Maximum principle, Energy methods, Fredholm alternative, Monotone iteration method. Steady State Characteristics of Nonlinear Dynamical Systems: Dynamic systems, Steady state, Continuation methods.	7	20%			
VI	Linear Stability and Limit Cycles: Linear Stability of					
	Dynamical Systems. Bifurcation Theory, Maps. Secondary bifurcation and chaos:	6	20%			
END SEMESTER EXAM						

Question Paper Pattern:

Maximum Marks: 100

Exam Duration: 3 Hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)

Estd.

Part B: There shall be **Three questions** uniformly covering Module 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)

Part C: There shall be **Three questions** uniformly covering Module 5 and 6, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together. (2 x20=40 Marks)