Course	Course Name	L-T-P- Credits	Yea Introd	r of uction			
CH467	PROCESS MODELING AND SIMULATION	3-0-0-3	20	16			
Prerequisite : Nil							
Course Objectives							
• To give student an understanding of Process Modelling and Simulation							
Svllabus							
Definitions And Classification Of Modelling, Fundamental Laws Of Chemical Engineering,							
Mathematical Models For Chemical Engineering Systems, Continuous Flow Tanks, Mixing							
Vessels, Steam Jacketed Vessel, Batch Distillation, Gas Flow System, Simulation Of Gravity							
Flow Tank, CSTR In Series, Non-Isothermal CSTR, Binary Distillation Column, Batch							
Reactor, Jacketed Tubular Reactor, Countercurrent Liquid-Liquid Heat Exchanger							
Expected Outcome							
• The students will be able to develop mathematical models of Chemical engineering							
processes and do simulation.							
References	:						
1. Am	iya K.Jana, Computer Process Modelling and Compu	ter Simulati	on, Prentic	e Hall of			
India							
2. Biquette W.B., Process Dynamics - Modeling Analysis and Simulation, Prentice Hall of							
Indi	a						
3. Franks R.G.E., Mathematical Modeling in Chemical Engineering, John Wiley							
4. John	H Publishers	lodeling wit	n PC Simu	liation,			
5 Juyben W L. Process Modeling, Simulation and Control for Chemical Engineers, Mc							
Gra	w Hill International Edition						
	Course Plan						
Modulo	Contents		Hours	Sem.			
Wiouuic	Fetd		liouis	Exam Marks			
	Definitions of Modelling, uses of Mathematical m	odelling	/				
Ι	classification of modelling techniquesbasic	modelling	7	15%			
_	principles	U					
	Fundamental laws of chemical engineering	: Energy					
п	equations, continuity equation, equation of motion	i, transport	7	15%			
11	equations, equations of state, equilibrium states and	d chemical	,	1570			
	kinetics-examples						
	FIRST INTERNAL EXAMINATI	UN					
	continuous flow tanks- Mathematical models f	for mixing	-	2004			
	vessel- mixing with reaction - reversible reaction	8		20%			
117	Steam jacketed vessel-boiling of single compone	ent liquid-	7	2004			
1V	open and closed vessel- batch distillation Gas flo	w system-	/	20%			
	nyuraune transients between two reservoirs						

SECOND INTERNAL EXAMINATION					
V	Reaction kinetics-general modeling scheme-batch reactor- ideal binary distillation column Distributed system: jacketed tubular reactor - countercurrent liquid-liquid heat exchanger	7	15%		
VI	Simulation of gravity flow tank- CSTR in series - non- isothermal CSTR- binary distillation column	7	15%		
END SEMESTER EXAMINATION					

Question Paper Pattern

Maximum Marks: 100

Exam Duration: 3 Hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15= 30 Marks)

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together.

(2 x20= 40 Marks)

Part C: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15= 30 Marks)