Course	Course Name	L-T-P- Credits	Yea	ar of Justion			
CH466	COMPOSITE MATERIALS	3-0-0-3	20	116			
Prerequisit	e: Nil						
Course Objectives							
• To impart the basic concepts of composite materials							
Svllabus							
General Characteristics of Composites, Basic Materials, Processing/Manufacturing, Composite							
Micromech	anics, Composite Mechanics Theory, Failure Ar	nd Strength	Design,	Composite			
Behaviour And Applications							
Expected C	Outcome	ICI					
At the end of	of the course the students will be able to	Y					
i. l	Demonstrate understanding of fundamentals in mate	rials, manu	facturing,				
1	nechanics, design, and repair of composites;						
ii. Identify advantages and disadvantages of composites with respect to metals; and							
111.	Apply the knowledge acquired to the design and man	nufacturing	of high-pe	erformance			
Doforoncos							
Kelei ences		1. 1.0.1	5 1 1 1	T . 1			
I. G.P	atti, Advances in composite materials, , (1978), Ap	oplied Scien	ce Publish	ers Ltd.,			
	1011. [ull An Introduction to Composite Materials, Camb	ridge Univ	arcity Prace				
Z. D. I. Carr	bridge		215ity 11055	,			
3. G.L.	ubin, Handbook of composites, Van Nostrand, New	7 York, 198	2.				
4. K.K	. Chawala, Ceramic matrix composites, , 1 st ed., (19	993) Chapm	nan & Hall	, London.			
5. K.K	Chawla, Composite Materials, 2 nd ed., (1987) Sprin.	iger-Verlag	, New Yorl	K			
6. Katz	.H.S. & J.V. Milewski, Handbook of Fillers and Re	einforcemen	t for plasti	cs- Van			
Nos	rand, New York.						
7. M.O.W. Richardson (Ed)Polymer Engineering Composites. Applied Science Publishers,							
8 Mol	JOI.	ooring of ro	inforced				
o. Moi Plas	tics/Composites Van Nostrand New York	cering of re	morceu				
9. P. N	I. Ajavan, L. S. Schadler, P. V. Braun, Nanocompo	site Science	e and Tech	nology.,			
(200	3), Wiley-VCH Verlag GmbH Co. KGaA, Weinhei	m.		0.777			
10. V.V	. Vasiliev and E.V. Morozov, Mechanics and Analy	ysis of Com	posite Mat	erials,,			
(200	1), Elsevier Science Ltd, The Boulevard, Langford	Lane, Kidli	ngton, Oxf	Ford OX5			
lGB	, UK.						
 	Course Plan		I	Som			
Module	Contents		Hours	Exam			
				Marks			
	General characteristics of composites, advanta	ages and					
I	disadvantages, advantages of using composites	in high	7	15%			
· ·	performance structures application trends. C	Composite					
	applications in aircraft, space, transportation,	, energy,					

	electronics, sports and medical industries. Characteristics of		
	fibers, matrices, interface bonding, adhesives microstructure		
	of composites, the function of the fiber and matrix in a		
	composite.		
	Thermoplastic and thermoset matrix composites. Composite		
	products and their unique properties. The strengthening		
	mechanism that makes composites stronger. Environmental		
	effects to design of composite structures.	K . A	
	Processing/Manufacturing: Traditional and novel	N1	
	approaches process fundamentals Fundamental physics in	11	
	composite manufacturing manufacturing processes for		
	polymeric composites	h. And	
II	Typical defects introduced in manufacturing and the	7	15%
	methods utilized to minimize these defects Common		
	terminology in composites manufacturing Special tooling		
	considerations required for composite manufacturing		
	EIDST INTEDNAL EVAMINATION		
	Composite Micromechanics		
	Basic concepts stiffness strength thermal and moisture		
Ш	expansion Anisotropic and isotropic materials tailored	7	15%
	expansion. Anisotropic and isotropic materials, tanoical specific strengths. The cause of discontinuous strenges in	/	1370
	specific strengths. The cause of discontinuous stresses in		
	Composites and now it differs from metals.		
	Composite Mechanics Theory		
	Laminate theory; macromechanical benavior of a ply, out-of-		
	The stress-strain relations of a unidirectional composites.		
	subjected to mechanical, thermal and moisture loads.		
IV.	Stress/strain/curvature of a laminate under constant axial	7	15%
	forces and bending moments. The unusual behaviors which	/	
	may occur in laminates such as bending/stretching coupling	/	
	and stretching-shear coupling. The use of a specific layup		
	orientation based on the loading conditions and CLT. The		
	role of lamina and their arrangement in a laminate.		
	SECOND INTERNAL EXAMINATION		
	Strength Strength Design. Tanure Cinena, Lammate		
V	such any incompany (demonstration) affects on metallic		200/
V	and environmental (damage/corrosion) effects on metallic	7	20%
	vs. composite structures. Key damage mode for composites		
	and composite damage tolerance capabilities.		
	Composite Behavior and Applications: How do actual		
VI	composites for aerospace, automotive, sporting goods, high		
	temperature applications behave? Problem areas, long-term	_	20%
	performance, influence of structural geometries the	7	- / -
	Advantages and disadvantages of composites with respect to		
	Product Lifecycle Management. General considerations and		

 Basic types of composite repair and their benefits.	
service damage types for composites. Non-destructive	
process involved in composite structural design. Typical in-	

Question Paper Pattern

Maximum Marks: 100

Exam Duration: 3 Hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15=30 Marks)

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15= 30 Marks)

Part C: There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together.

(2 x 20 = 40 Marks)