Course	Course Name	L-T-P- Credits	Year	of			
CH465	PROCESS OPTIMIZATION	3-0-0-3	201	<u>6</u>			
Prerequisite : Nil							
Course Objectives							
• To	identify and formulate different types of optimizati	on problems					
• To	solve various multivariable optimization problems						
• To apply different optimization techniques in process design.							
Syllabus ADDUL NALAM							
Nature and essential features of optimization problems, formulation of optimization							
problems,	convex and concave functions, numerical me	ethods for o	one dime	ensional			
optimizati	on problems, numerical methods for unconstraine	ed multivarial	ble optim	ization,			
nonlinear	programming with constraints, application of optim	nization tech	niques in	process			
design							
Expected	Outcome						
The stude	its completing this course will be able to:						
1	analyze & solve practical chemical engineering (optimization p	broblems				
Text Boo	appry the knowledge of optimization to design p						
1. Bei	ghtler C.S., Phillips D.T. & Wilde D.J., Foundations	of Optimizat	ion. Prent	ice			
Ha	l of India	or optimized	,				
2. Bey	reridge G.S.G. & Schechter R.S., Optimiszation: The	eory & Practic	e, McGra	ıw Hill			
3. Edg	ar T.F. & Himmelblau D.M., Optimization of Chem	ical Processes	s, McGrav	w Hill			
4. Ra	S.S., Optimization: Theory and Applications, Wiley	y Eastern					
Reference	Books	· · · ·					
1. J.	Nocedal and S. J. Wright, Numerical Optimization, S	Springer Verla	lg. Nanaga				
2. M.C. Joshi and K. M. Moudgalya, Optimization: Theory and Practice, Narosa							
Estd.							
	Course Plan			Som			
Module	Contents		Hours	exam			
				marks			
	Nature and organisation of optimisation problems	- scope and					
Ι	hierarchy of optimisation -typical applications of o	ptimisation -					
	essential features of optimisation problems – objec	tive function	7	15%			
	- investment costs and operating costs in objectiv	re function -					
	optimising profitability - constraints - internal a	and external					
	constraints						
	Formulation of optimisation problems -typical exam	ples - nature					
	of functions and their representation - continuous	functions -					
II	discrete functions - unimodal functions - convex	and concave	7	15%			
	functions - necessary and sufficient conditions for	optimum of					
	unconstrained functions						

FIRST INTERNAL EXAMINATION				
III	Numerical methods for unconstrained functions - one dimensional search - gradient-free search with fixed step size - gradient search with acceleration - Newton's method - Quasi- Newton method - dichotomous search -fibonacci search - golden-section method – quadratic interpolation	8	20%	
IV	Numericalmethodsforunconstrainedmultivariableoptimisation – univariatesearch - Powell's method - method ofsteepest descent - Fletcher-Reevesconjugate - gradient method -Newton's methodLinearprogramming - basicgraphicalinterpretation -simplexmethod - apparentdifficultiesinthe simplexmethod - two-phasesimplex	8	20%	
SECOND INTERNAL EXAMINATION				
V	Nonlinear programming with constraints - equality constraints - method of direct substitution Lagrange multiplier method - use of lagrange multipliers for inequality constraints – Kuhntucker conditions for local optimality Complex method, - Rosen's gradient projection method	6	15%	
VI	Optimising recovery of waste heat - optimisation of evaporator design - optimum diameter for pipe for transportation of fluid - optimisation of liquid - liquid extraction process - optimal design and operation of staged distillation columns - optimum residence time for isothermal batch reactor - linear programming to optimize reactor operations	6	15%	
END SEMESTER EXAMINATION				

Question Paper Pattern

Maximum Marks: 100

Exam Duration: 3 Hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together. (2 x20=40 Marks)

Part C: There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)