Course code	Course Name	L-T-P- Credits	Year of Introduction
CH465	PROCESS OPTIMIZATION	3-0-0-3	$\mathbf{2 0 1 6}$
Prerequisite : Nil			
Course Objectives - To identify and formulate different types of optimization problems - To solve various multivariable optimization problems - To apply different optimization techniques in process design.			

Syllabus

Nature and essential features of optimization problems, formulation of optimization problems, convex and concave functions, numerical methods for one dimensional optimization problems, numerical methods for unconstrained multivariable optimization, nonlinear programming with constraints, application of optimization techniques in process design

Expected Outcome

The students completing this course will be able to:
i. analyze \& solve practical chemical engineering optimization problems
ii. apply the knowledge of optimization to design problems

Text Books

1. Beightler C.S., Phillips D.T. \& Wilde D.J., Foundations of Optimization, Prentice Hall of India
2. Beveridge G.S.G. \& Schechter R.S., Optimiszation: Theory \& Practice, McGraw Hill
3. Edgar T.F. \& Himmelblau D.M., Optimization of Chemical Processes, McGraw Hill
4. Rao S.S., Optimization: Theory and Applications, Wiley Eastern

Reference Books

1. J. Nocedal and S. J. Wright, Numerical Optimization, Springer Verlag.
2. M.C. Joshi and K. M. Moudgalya, Optimization: Theory and Practice, Narosa Publishing.

Course Plan			
Module	Contents	Hours	Sem. exam marks
I	Nature and organisation of optimisation problems - scope and hierarchy of optimisation -typical applications of optimisation essential features of optimisation problems - objective function - investment costs and operating costs in objective function optimising profitability - constraints - internal and external constraints	7	15\%
II	Formulation of optimisation problems -typical examples - nature of functions and their representation - continuous functions discrete functions - unimodal functions - convex and concave functions - necessary and sufficient conditions for optimum of unconstrained functions	7	15\%

FIRST INTERNAL EXAMINATION			
III	Numerical methods for unconstrained functions - one dimensional search - gradient-free search with fixed step size gradient search with acceleration - Newton's method - QuasiNewton method - dichotomous search -fibonacci search -golden-section method - quadratic interpolation	8	20\%
IV	Numerical methods for unconstrained multivariable optimisation - univariate search - Powell's method - method of steepest descent - Fletcher-Reeves conjugate - gradient method Newton's method Linear programming - basic concepts in linear programming graphical interpretation -simplex method - apparent difficulties in the simplex method - two-phase simplex method	8	20\%
SECOND INTERNAL EXAMINATION			
V	Nonlinear programming with constraints - equality constraints method of direct substitution Lagrange multiplier method - use of lagrange multipliers for inequality constraints - Kuhntucker conditions for local optimality Complex method, - Rosen's gradient projection method	6	15\%
VI	Optimising recovery of waste heat - optimisation of evaporator design - optimum diameter for pipe for transportation of fluid optimisation of liquid - liquid extraction process - optimal design and operation of staged distillation columns - optimum residence time for isothermal batch reactor - linear programming to optimize reactor operations	6	15\%
END SEMESTER EXAMINATION			

Question Paper Pattern

Maximum Marks: 100
Exam Duration: 3 Hours

Part A: There shall be Three questions uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any Two questions. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.
($2 \times 15=30$ Marks)

Part B: There shall be Three questions uniformly covering Modules 3 and 4, each carrying 20 marks, of which the student has to answer any Two questions. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together.
($2 \times 20=40$ Marks)

Part C: There shall be Three questions uniformly covering Modules 5 and 6, each carrying 15 marks, of which the student has to answer any Two questions. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.
($2 \times 15=30$ Marks)

