Course code	Course Name	L-T-P- Credits	Year Introdu	of ction
CH204	CHEMICAL ENGINEERING THERMODYNAMICS	3-1-0-4	201	6
Prerequisit	e : Nil			
Course Ob	jectives			
To understa	nd the concepts and applications of chemical e	engineering the	ermodynami	cs
Syllabus Basic Concepts and Definitions, Laws of Thermodynamics, Some applications of the Laws of Thermodynamics, Entropy, PVT behaviour of pure substances, Equations of State, Thermodynamic properties of pure fluids, Fugacity and Activity of Pure fluids, Properties of Solutions, Ideal and Non ideal solutions, Property change of mixing, Excess Properties, Gibbs Duhem equation, Phase equilibrium criteria, Phase rule for non-reacting system, Vapour Liquid Equilibria concepts, VLE diagrams, Activity coefficient models, Liquid-Liquid Equilibria, Chemical Reaction Equilibria, Equilibrium Constant, Phase rule for reacting system Expected Outcome At the end of the course the students will be able to 1. Apply the laws of thermodynamics to analyse chemical engineering problems 2. Compute the properties of ideal/real gases and mixtures/solutions 3. Analyse processes using mass, energy and entropy balances 4. Evaluate composition of vapor-liquid equilibrium for ideal and non-ideal systems 5. Determine equilibrium constant and mole fraction of reaction mixture under give				
Text books				
 Smith J. M. & Van Ness H.V., Introduction to Chemical Engineering Thermodynamics, McGraw Hill Narayanan K. V., A Textbook of Chemical Engineering Thermodynamics, 2nd Edn., Prentice-Hall of India, 2013 				
 References: Stanley I. Sandler, Chemical and Engineering Thermodynamics, 2nd Edn., John Wiley & Sons, USA, 1989 Kyle B.G., Chemical and Process Thermodynamics, Prentice-Hall of India Y.V.C. Rao, Chemical Engineering Thermodynamics, Universities Press 				
Course Plan				
Module	Contents		Hours	Sem. Exam Marks
Ι	Scope of Thermodynamics, Thermodynamics, Closed, open and isolated system - intensive properties - path and state functions - path irreversible process –Zeroth law of Thermodynamics- Energy Balance Systems-Limitations of First Law- Sector	mic Systems and extensiv reversible an ynamics- Firs ce for Close cond Law o	- e d st g f	15%

	Thermodynamics-Carnot's principles -Definition of		
	Entropy-Calculation of entropy change in processes		
	involving ideal gases-Definition of availability and exergy –		
	entropy generation in steady flow processes-Third law of		
	Thermodynamics-Energy balance of open systems-Flow		
	through pipe nozzles compressors throttling refrigeration		
	liquefaction		
	D V and D T diagram of pure substances. Equations of tate	h 4	
	for mol source was der Wesl's Dedlich Kwarz Der	M	
	Tor real gases- van der waars, Redich Kwong, Peng	1.4.1	
	Robinson and Virial equations. Principle of corresponding		
	states- generalized compressibility chart- Fundamental		
	Property Relations-Maxwell's Equations- Clausius-		
п	Clapeyron equation - entropy-heat capacity relationships -	0	15%
11	equations for entropy, internal energy and enthalpy in terms		1370
	of measurable quantities- Joule-Thomson coefficient – Gibbs		
	Helmholtz equationfugacity and activity of pure fluids -		
	selection of standard state - effect of temperature and		
	pressure on fugacity and activity-residual properties-		
	thermodynamic diagrams.		
	FIRST INTERNAL EXAMINATION		
	Definition of partial molar properties-chemical potential -		
	definition - effect of temperature and pressure on fugacity-		
	fugacity in solution - ideal solution - Lewis-Randall rule-		
	Recult's law - Henry's law - activity and activity		
	according and activity and activity		
III	on activity coefficients. Cibbs Duber equations, criterion	9	15%
	of phase equilibric exiterion of stability phase equilibrium		
	of phase equilibria - criterion of stability - phase equilibrium		
	in single component systems - phase equilibria in	1	
	multicomponent systems - phase rule for non-reacting	/	
	systems - Duhem's theorem		
	Vapour-liquid equilibrium - phase diagram for binary		
	solutions - VLE in ideal solutions - non-ideal solutions -		
	positive and negativedeviation - azeotropes - VLE at low		
	pressures-Application of activity coefficient equations in		
IV	equilibrium calculations - activity coefficient models such as		150/
	Wohl's equation - van Laar equation - Wilson	9	15%
	equation -NRTL, UNIQUAC and UNIFAC models -		
	calculation of activity coefficients using		
	Gibbs - Duhem equations - consistency tests for equilibrium		
	data - Redlich-Kister method -coexistence equation		
SECOND INTERNAL EXAMINATION			
Vapour-liquid equilibrium at high pressures – vaporization			2 001
v	equilibrium constants - bubble point, dew point and flash	10	20%

calculations in multi component systems- vapour-liquid equilibrium in partially miscible and immiscible systems - phase diagrams - principles of steam distillation – phase				
	equilibrium considerations in steam distillation - liquid- liquid equilibrium - binary and ternary equilibrium diagrams			
	- use of triangular diagrams for ternary equilibrium			
VI	Chemical reaction equilibria-extent of reaction-equilibrium constant - standard free energy change - feasibility of reaction -effect of temperature on equilibrium constant – evaluation of equilibrium constant - equilibrium conversion in gas-phase reactions - effect of pressure and other parameters on conversion - pressures of decomposition in gas-solid reaction - simultaneous reactions - phase-rule for	10	20%	
	reacting systems			
END SEMESTEREXAMINATION				

Evaluation Scheme

• Internal Evaluation: Total Marks: 50

(i)	Total Marks for Assignment/Seminar/Project/Case study or any other
	appropriate tool used for the evaluation of the course outcomes: 10
	A minimum of above two tools shall be used. If more than 2 tools are used,
	proportionate change shall be made in the marks so that the total contribution
	of marks for item (i) above rem <mark>ai</mark> ns at 10.

(ii) Marks for Tests: Two tests each carrying 40% weightage shall be conducted with total contribution of 40 marks.

•	External Evaluation	ı:	University Examination
	Maxim <mark>um Marks</mark>	:	100
	Exam Duration	:	3 Hours

Question Paper Pattern:

There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

(2 x15= 30 Marks)

There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together.

2014

(2 x15= 30 Marks)

There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together.

(2 x 20 = 40 Marks)