Course code	Course Name L-T-P - Credits		r of uction		
CH407	BIOCHEMICAL ENGINEERING 3-0-0-3	20			
Prerequis					
Course Objectives					
1. To understand different types of cells and classification of kingdom protistae.					
	interpret kinetics of enzyme catalyzed reactions	om promou			
	compare different types of fermentation cycles and growth p	nases.			
	know different metabolic pathways and transport across cell				
	analyze Heat and mass transfer effects in bioprocess and bio				
Syllabus					
•	y, structure of cells-protist kingdom- Kinetics of Enzyme	catalyzed r	reactions-		
	– Menten equation, Substrate concentration dependence of				
	substrate activation and inhibition- competitive and uncon				
	pecificity- Immobilized enzyme technology- Applications of				
	and energetics of the cell- Transport across cell membra				
	g of growth process- Fermentation schemes- Transport pheno				
	o-chemical reactors		o process		
Expected					
	ents will be able to				
i.	Understand the fundamental aspects of Biochemical Enginee	ing			
ii.	Develop the kinetics of enzyme catalyzed reactions and trans	•	ses		
	Explain the metabolic pathways and energetic of the cell.	port process	505		
	Explain the metabolic pathways and chergete of the con-				
Reference	Books				
	nes E. Baileay and David F. Ollis., "Bio-chemical Engineerin	g Fundame	ntals".		
	c Graw Hill International Editions.	0			
2. D	G Rao., "Introduction to Biochemical Engineering", Tata Mc	Graw Hill.			
	chael L Shuler and Frikret Khargi., "Bioprocess Engineering		epts"		
	II Publications.		1		
	Course Plan				
			Sem.		
Module	Contents	Hours	Exam		
Mouule	Contents	liouis	marks		
	Micro Biology, Cell theory, Structure of cells, ce	1			
	fractionation, protist kingdom and their distinguishin		15%		
	characteristics.		1070		
I	Chemicals of life: repetitive and non repetitive bio polymer	s			
1	- lipids, sugars and polysaccharides, nucleotides RNA an				
	DNA, amino acids and proteins. Protein structure,	4	15%		
	Divis, annio acids and proteins. I fotein structure,				
	Kinetics of Enzyme catalyzed reactions: simple enzym	a .			
	kinetics of Enzyme catalyzed feactions. simple enzyme kinetics with oneor two substrates, Michaelis - Mente				
	Kinetics, Evaluation of parameters in Michaelis – Mente				
II					
	-				
II	equation, Substrate concentration dependence of enzym	e 7	15%		
II	equation, Substrate concentration dependence of enzym catalysed reactions: substrate activation and inhibition	e 7	15%		
II	equation, Substrate concentration dependence of enzym catalysed reactions: substrate activation and inhibition Modulation and regulation of enzyme activity - competitiv	e 7 ., e	15%		
II	equation, Substrate concentration dependence of enzym catalysed reactions: substrate activation and inhibition	e 7 ., e	15%		

FIRST INTERNAL EXAMINATION				
III	Enzyme specificity and enzyme specificity hypotheses, Enzymes of industrial importance. Isolation of crude enzyme - Koji technique - Enzyme purification. Immobilized enzyme technology: enzyme immobilization, medical and analytical applications of immobilized enzymes. Applications of hydrolytic enzymes: esterases, carbohydrases, proteolytic enzymes, pectic enzymes and additional applications. Medical application of enzymes.	6	20%	
IV	Metabolic pathways and energetics of the cell: Metabolic reaction coupling : ATP, ADP and NAD. Oxidation and reduction- Coupling via NAD. Embden-Meyerhof pathway (EMP), Pentose phosphate cycle - Entner Doudorff (ED) pathway, Respiration - TCA cycle. Transport across cell membranes - passive transport, active transport and facilitated diffusion.	7	20%	
	SECOND INTERNAL EXAMINATION			
V	Measuring and monitoring of growth process (Hemacytometer, colony count and turbidity methods). Batch cultivation - growth cycle (lag, exponential, stationary and death phase). Fermentation schemes - Gaden's classifiation (type I, II and type III) and Deindoerfer classification	8	15%	
VI	Transport phenomena in Bio process system-Gas-liquid mass transfer in cellular system - basic mass transfer and concepts - rates of metabolic oxygen utilization – determination of oxygen transfer rates-mass transfer across free falling or raising bubble and free surface with or without agitation in heat transfer. Microbial heat generation and correlation, bio-chemical reactors, types of reactors for sterilization.	8	15%	
END SEMESTER EXAMINATION				

Question Paper Pattern:

Exam Duration: 3 Hours

Maximum Marks: 100 **Part A :** There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any Two questions. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put 2014 together. (2 x15 = 30 Marks)

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together. (2 x 20 = 40 Marks)

Part C: There shall be Three questions uniformly covering Modules 5 and 6, each carrying 15 marks, of which the student has to answer any Two questions. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together. (2 x 15 = 30 Marks)