Course	Course Name	-T-P- redits	Yea Introd	r of uction		
CH360	CORROSION ENGINEERING 3-	0-0-3	20	16		
Course Objectives						
• This course is intended to impart knowledge on the importance of corrosion and its						
prevention and control in process industries						
Syllabus						
Importance and principles of corrosion types of corrosion testing and monitoring of						
corrosion, prevention of corrosion, corrosion control in different engineering materials.						
corrosion control in various industries						
Expected Outcome						
At the end of the course the student will be able to:						
i identify different types of corrosion						
ii demonstrate various corrosion testing techniques						
iii. explain various corrosion prevention techniques						
iv. select the appropriate corrosion control technique for different engineering						
	materials					
v. know the corrosion control techniques used in various industries						
Text Boo	ks					
1. F	ontana M. G., Corrosion Engineering, , Tata McGraw Hill,	3 rd Edi	tion, 2005.			
2. Jo	ones D. A, Principles and Prevention of Corrosion,., Prentic	e-Hall,	Inc., 2^{nd} E	dition,		
19	996.					
	V B					
Reference	e Books					
• Se	cully J. C, The Fundamentals of Corrosion,., 2 nd Ed., Perga	imon Pi	ress.			
• S1	ansbury E. E. and Buchanan, R. A, Fundamentals of Electr	rochem	ical Corros	sion, ,		
A	SM International.	rd				
• U	hlig H. H. and Revie R. W, Corrosion and Corrosion Cont	rol, 3^{10}	Ed., John	Wiley &		
S	ons.					
Course Plan						
Module	Contents	. 1	Hours	exam		
	Definition and importance of corresion Principles of cor	rosion		marks		
Ι	phenomenon: Corrosion rate expressions. Electroche	mical		15%		
	aspects Environmental affects Matellurgical and	othor	7	1370		
	aspects, Environmental effects, Metanurgical and	oulei				
	Different forme of correction Columnia on two motel corr	orion				
	Creation correction Diffing Intergraphics correction Sel					
II	Crevice corrosion, Pitting, Intergranular corrosion, Ser		7	15%		
	leaching, Erosion corrosion, Stress corrosion, Hyd	rogen				
FIDST INTEDNAL EVAMINATION						
FIRST INTERNAL EXAMINATION						
III	electrochemical methods: potentiostat. Tafel extranol	ation.	7	15%		
	linear polarization, galvanostat,		-			

	impedance spectroscopy, thermogravimetric technique, salt spray test, weight change measurements.			
IV	Corrosion prevention: Design and coatings, inhibitors and surface engineering, cathodic protection and anodic protection.	7	15%	
SECOND INTERNAL EXAMINATION				
V	Corrosion and its control in different engineering materials:			
	concrete structures, duplex, super duplex stainless steels, ceramics, composites and polymers.	7	20%	
VI	Corrosion and its control in industries: Power, Process,			
	Petrochemical, ship building, marine and fertilizer industries.	7 20%		
	Corrosion auditing in industries, Corrosion map of India.	A day		
END SEMESTER EXAM				

Question Paper Pattern

Maximum marks : 100

Exam. Duration 3 hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together. $(2 \times 15 = 30 \text{ Marks})$

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 15 marks for all the subdivisions put together. $(2 \times 15 = 30 \text{ Marks})$

Part C: There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in one main question with a total of 20 marks for all the subdivisions put together. (2 x20=40 Marks)

2014