Course code	Course Name	L-T-P-Credits	Year of Introduction				
CH363	PRINCIPLES OF NANOMATERIALS AND NANOTECHNOLOGY	3-0-0-3	2016				
Prerequisite :	Nil						
Course Object							
	 To introduce the fundamental principles of nanotechnology and nanomaterials 						
• To understand the various methods of characterization and synthesis of nanomaterials							
	w the applications of nanotechnology and nano	materials.					
Syllabus							
	nanotechnology- Classification of nanomater						
	machines and nanotechnology- Atomic structur						
	alar and Atomic size-surfaces and dimensiate acterization - Methods of Synthesis of Nanome						
	y- Molecular nanoscale engineered devices,						
nano-particles.	y Molecular hanoseare engineered devices,	Renetically commo	cd synthesis of				
Expected Out	comes						
The students w							
i. Ider	ntify different instruments for Nano scale chara	cterization.					
ii. Exp	lain various methods of synthesis of Nano mate	erials					
	nmarize various applications of nanomaterials.						
	the important properties of nanostructured mat						
	line various manufacturing techniques of Nano	scale materials.					
References:	n, Handbook of Nanotechnology, Springer–Spi	ringer 2007					
	Koch. Noyes, Nano-structured materials: Proce	-	nd Potential				
	ations, William Andrew Publishing New York.	essing, properties a	iu rotentiai				
	Kumar, Nanodevices for Life Sciences, Vol 4,V	VII EV VCH 2006					
	Kumar, Nanomaterials for Cancer Diagnosis and						
4. Chana I VCH	Rumar, Nanomaterials for Cancer Diagnosis a	nu merapy, vor o a					
	Kumar, Nanomaterials for Medical Diagnosi	s and Therapy V	ol 10 WILEY				
J. Chana VCH		is and merapy, v					
 VCH 6. Challa Kumar, Tissue, Cell And Organ Engineering, Vol 9, WILEY-VCH, 2006 							
	f M. Niemeyer and Chad A. Mirkin, Nanobiote						
	spectives, Wiley-VCH; 1 edition, 2004	ennology. Concept	s, reprications				
	_	Nature Wiley-Liss	2004				
 Bavid S. Goodsell, Bionanotechnology, Lessons from Nature, Wiley-Liss, 2004. Fujita H, Micromachines as Tools for Nanotechnology, Springer Verlag, 2003 							
	Decher and Joseph B. Schlenoff, Multilayer						
	and Co. KGaA, 2003		y ven venug				
	ong A.O, Nano structure and nano-materials, In	perial College Pres	s. London				
12. Hari Si	ngh Nalwa, "Nanostructured Materials and N						
2002			1 1000				
	sraelachvil, Intermolecular and Surface Forces,		ondon, 1992.				
14. Jean-Marie Lehn, Supramolecular Chemistry, Wiley VCH, 1995							
	n Steed & Jerry Atwood, Supramolecular Cher						
	h J. Klabunde, Nanoscale Materials in Chemist	•					
	Schulz, Mannur J. Sundaresan, Ajit D. Kelkar,	, Nanoengineering	of Structural,				
Functio	nal and Smart Materials, CRC Press						

- 18. Nicholas A.Kotov, Nanoparticles Assemblies and Superstructures, 2006, CRC Press.
- 19. Niemeyer C.M and Mirkin C.A, Nanobiotechnology Concepts, Applications and Perspectives 2004, Wiley VCH Verlag GMBH and Co.
- 20. Poole P, Jr and Frauk J. Owens, Introduction to Nano technology, Charles P, Wiley Interscience, New Jersey, 2003.
- 21. Pradeep.T, Nano: The Essentials, Tata McGraw-Hill Publishing Company Ltd, 2007.
- 22. Ralph et al, (Eds), Nanoscale Technology in Biological Systems, 2005, CRC Press.

17

- 23. Rao C.N.R., Muller A., Chutham A.K, The Chemistry of Nanoparticles Synthesis, Properties and Applications, Vol 1 and Vol 2, WILEY-VCH
- 24. William A. Goddard III, Donald W Brenner, Sergey E. Lyshevski, Gerald J. Iafrate, Handbook of Nanoscience, Engineering, and Technology, CRC Press Taylor and Francis Group, 2007 NII

Module	Content	Hours	Sem. Exam Marks
Ι	Introduction to Nanotechnology, its emergence and challenges Classification of nano-materials: Zero, one, two and three dimensional nano-structured materials Supramolecular Chemistry: Definition and examples of the main intermolecular forces used in supramolecular chemistry. Self- assembly processes in organic systems. Main supramolecular structures. Types of Nanomachines and nanotechnology- Atomic structure of molecules and phase Energy-Molecular and Atomic size- surfaces and dimensional space-Top down and bottom up.	7	15%
П	Instrumentation for nanoscale characterization: Basic characterization techniques; Electron microscopy; Atomic force microscopy; Photon correlation spectroscopy The measurable properties and resolution limits of each technique, with an emphasis on measurements in the nanometer range. Methods of Synthesis of Nanomaterials: Bottom-up (building from molecular level) and top-down (breakdown of microcrystalline materials) approaches.	8	15%
	FIRST INTERNAL EXAMINATION		
III	Biologically-Inspired Nanotechnology: basic biological concepts and principles that may lead to the development of technologies for nano engineering systems. Coverage will be given to how life has evolved sophisticatedly Molecular nanoscale engineered devices, and discuss how these nanoscale biotechnologies are far more elaborate in their functions than most products made by humans. Synthesis of nano-particles through homogenous and heterogeneous nucleation Kinetically confined synthesis of nano-particles: Synthesis of nano-wire, rod, tubes and thin films.	7	15%

IV	 Special nano-materials: carbon, carbon fullerenes and carbon, nano-tubes, nano and microporous materials, core shell structure and nano-composites. Electrical, magnetic, optical, thermal and mechanical properties of nano-structured materials 	7	15%			
	SECOND INTERNAL EXAMINATION					
V	 Manufacturing of nanoscale materials: Chemical vapor deposition of carbon nano tubes, Plasma deposition of ultra-thin functional films on nano materials. Structural nano composites, carbon nano fiber and carbon nano tube/polymer composite fibers and films Nano scale intelligent materials 	6	20%			
VI	Applications: Solar energy conversion and catalysis, Molecular electronics and printed electronics Nanoelectronics, Polymers with a special architecture, Liquid crystalline systems, Linear and nonlinear optical and electro-optical properties, Applications in displays and other devices, Advanced organic materials for data storage, Photonics, Plasmonics, Chemical and biosensors, Nanomedicine and Nanobiotechnology.	7	20%			
END SEMESTER EXAMINATION						

Question Paper Pattern:

Maximum Marks: 100

Exam Duration: 3 Hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)

Part B: There shall be **Three questions uniformly** covering Module 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)

Part C:There shall be **Three questions uniformly covering** Module 5 and 6, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 20 marks for all the subdivisions put together. (2 x20=40 Marks)