Course code	Course Name	L-T-P- Credits	Yea Introd	
CH308	CHEMICAL REACTION ENGINEERING-II	3-0-0-3	20	16
Prerequis	ite : CH305 Chemical reaction engineering - I			
Course O				
an	expose the students to the concepts of non-ideal flow d reactor design for heterogeneous reactions and desig erations.			
non-cataly	flow, RTD studies, Models for non-ideal flow. Kinetic tic heterogeneous reactions. Non-Isothermal reactor and non adiabatic operations.		-	-
Expected	outcome	1	_	
At the end	of the course, students will be able to			
i.	Understand non ideal behaviour of chemical reactors.			
ii.	Set up and solve non ideal flow models using RTD st			
iii.	Analyze the kinetics and design aspects of catalytic a	nd non-cat	alytic	
iv.	heterogeneous reactions. Set up and solve energy balances for non-isothermal of	operation	of chemic	51
1v.	reactors.	operation		11
v.	Design chemical reactors for non-isothermal operatio	ins		
vi.	Develop an awareness of stability and safety of chem		rs	
Reference				
1. HS	Scott Fogler, "Elements of Chemical Reaction Enginee	ering", Pre	ntice Hall	of
Ind		11		
2. Jan	nes J Carberry, "Chemical &Catalytic Reaction Engine	eering", M	le Graw H	ill
3. K.O	G Denbigh& J.C.R Turner, 'Chemical Reactor Theory	- An Intro	duction',	
	mbridge University Press			
	nny D Schmidt, 'The Engineering of Chemical Reaction	ons, 'Oxfo	rd Univers	sity
Pre		1 *****1		
	venspiel Octave, "Chemical Reaction Engineering", J	-		• 1
	nald W. Missen, Charles A. Mims, Bradley A. Saville	e, Introduc	etion to C	nemical
	action Engineering and Kinetics', John Wiley & Sons	J ;11		
7. 511	ith J.M, "Chemical Engineering Kinetics," McGraw H			Sem.
Module	Contents		Hours	Exam Marks
Ι	Non-ideal Flow. Residence time distribution for reactors: General characteristics - RTD Measurement of the RTD - pulse input, step tradintegral relationships, mean residence time, other me the RTD, Normalized RTD function E(theta), Int distribution. RTD in ideal reactors: Batch and p reactors, single CSTR, Laminar flow reactor,PFI series reactor	functions. cer input, oments of erval age blug flow	6	15%

	reactions, rate equation for instantaneous and rast and slow reactions,. .Non isothermal reactor design - Temperature and pressure effects - single reactions : Heat of reaction from		
V	Fluid Particle Reactions (Non catalytic) Selection of a model: Unreacted core model for spherical particles of unchanging size, model development for diffusion through gas film, ash layer, and chemical reaction controls. Rate of reaction for shrinking spherical particles - chemical reaction controls, diffusion controls, application to design. Fluid-fluid reactions - Rate equations, Kinetic regimes for mass transfer and reactions, rate equation for instantaneous and fast and slow	8	20%
IV	Diffusion and reaction in porous catalysts- effective diffusivity, tortuosity-modelling of diffusion with reaction on a spherical catalysts. Thiele Modulus, internal effectiveness factor, Overall effectiveness factor. Estimation of diffusion and reaction limited regimes - Weisz - Prater criterion for internal diffusion, Mears criterion for external diffusion. SECOND INTERNAL EXAMINATION	7	15%
III	FIRST INTERNAL EXAMINATION Catalyst and catalytic reactors: Catalysts, types of catalysts, catalytic properties, steps in a catalytic reaction, adsorption equilibrium constant, desorption, surface reaction, synthesizing rate law, rate limiting step, Langmuir- Hinshelwood approach. Development of design equations for ideal mixed batch reactor, plug flow tubular reactor and perfectly mixed continuous stirred tank reactor for heterogeneous systems. Heterogeneous data analysis for reactor design	7	15%
п	Reactor modelling with RTD - use of RTD to determine conversion. RTD models - segregation models, tanks in series model, the dispersion model. Conversion for the tanks-in- series model, fitting the dispersion model for small extents of dispersion and large extents of dispersion. Models for small deviations from plug flow and long tails. Mixing of fluids - self mixing of fluids - degree of segregation, early and late mixing of fluids	6	15%

Question Paper Pattern

Maximum Marks: 100

Exam Duration: 3 Hours

Part A: There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)

Part C: There shall be **Three questions** uniformly covering Module 5 and 6, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 20 marks for all the subdivisions put together. (2 x20=40 Marks)

-510