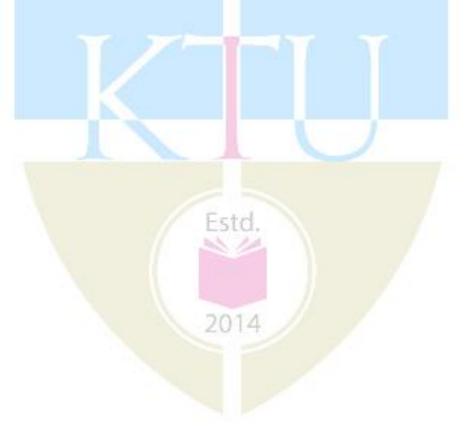
Course code	Course Name	L-T-P-Credits		nr of luction
CH303	MASS TRANSFER OPERATIONS -I	3-0-0-3	20	16
Prerequis				
Course O To To ads Syllabus Molecular contacting	bjectives impart the basic concepts of mass transport develop understanding about gas abso corption and drying. diffusion- Theories of mass transfer – equipments for mass transfer operations- Ga	interphase mass tr s absorption- Adsorpt	ansfer -G	as-Liquid
and dehum	hidification- Drying-dryers- Crystallization-cr	rystalizers		
Expected The studen i. ii. iii.	Outcome Its will be able to Explain the fundamentals of mass transfer o Design cooling tower, dryer, crystallizer and Summarize the quantitative requirements of	absorption systems	ve unit ope	rations.
2. 3. 4. 5. 6.	s: Coulson J.M. & Richardson J.F., Chemical I Pergamon Press Foust A.S. et. al., Principles of Unit Operation K. V. Narayanan and B. Lakshmikutty, Mas CBS Publishers McCabe W.L., Smith J.C. & Harriott P., Un McGraw Hill Rousseau R.W., Handbook of Separation Pr Seader J.D.& Henley E.J Separation Process Treybal R.E., Mass Transfer Operations, Mc Welty J.R., Wilson R.E. & Wicks C.E., Fun Transfer, John Wiley	ons, John Wiley s Transfer Theories an it Operations in Chem ocess Technology, Jo s Principles, John Wil cGraw Hill	nd Applica nical Engin <mark>hn W</mark> iley ey & Sons	eering,
	Course Plan			
Module	Contents 4		Hours	Sem. Exam Marks
Ι	diffusivity and estimation - steady state dif stagnant B and equimolar counter diffusi liquids and multi component gas mixtu coefficients, dimensionless groups and dir analogy between mass, heat and m Elementary treatment of theories of mass and surface renewal theories - interpha	nent of theories of mass transfer: penetration ewal theories - interphase mass transfer - fusion between phases - two-film theory -		20%

II	Gas-Liquid contacting equipments for mass transfer operations - single stage and multistage contact, tray towers, wetted wall columns, tray types and general features of tray designs (qualitative treatment), continuous contact equipment, venturi scrubbers, packed columns, packing materials and characteristics, general constructional details of packed columns, Factors affecting column performance-flooding, priming, coning, weeping, loading etc, comparison between plate and packed columns.	8	20%
	FIRST INTERNAL EXAMINATION	1	
III	Gas absorption - Solubility of gases in liquid, choice of solvent, Material balance in counter current and concurrent absorption and stripping, L/G ratio, multistage operation, number of plates by graphical construction, Kremser equation, tray efficiency, design of packed columns, transfer unit and general graphical method, dilute solutions and simplified design methods	8	15%
IV	Adsorption, types of adsorption, properties of adsorbents, adsorption isotherm for single gases, vapours and dilute liquid solutions, Adsorption isotherms (equations and derivations only), Adsorption equipments, adsorption wave, rate of adsorption and breakthrough curve. Humidification and dehumidification, Use of humidity chart to find properties of air, Lewis relation, water cooling with air, types of cooling towers, spray chambers for air humidification, principles of gas dehumidification.	8	15%
	SECOND INTERNAL EXAMINATION		
V	Drying, equilibrium moisture content, batch drying, rate of drying, cross-circulation drying, mechanism of moisture movement, continuous drying, parallel and counter current, material and enthalpy balances, rough estimate of size of rotary dryer based on heat-transfer units for drying at high temperature, industrial dryers for batch and continuous drying.	5	15%
VI	Crystallization, principles of crystallization, purity, yield, energy requirements, super saturation, nucleation, rate of nucleation, growth of crystals, growth coefficients, crystallisation equipment, MSMPR crystallizer.	5	15%

Question Paper Pattern


Maximum Marks: 100

Exam Duration: 3 Hours

Part A : There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 20 marks for all the subdivisions put together. (2 x 20 = 40 Marks)

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)

Part C: There shall be **Three questions** uniformly covering Module 5 and 6, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 15 marks for all the subdivisions put together. (2 x15= 30 Marks)

