Course code	Course Name	L-T-P-Credits		ear of duction			
CH302	PROCESS DYNAMICS AND CONTROL	3-1-0-4	2	2016			
Prerequisite: Nil							
Course Objectives							
• To impart the basic concepts of mathematical modeling and Laplace transforms for							
dynamic study							
 To impart fundamentals of controls for chemical processes like block diagram 							
development & reduction, stability analysis, tuning etc.							
Syllabus							
Laplace transform and its properties -dynamics of first order systems - systems in series -							
dynamics of second order systems -closed loop systems - block diagram - types of controllers -							
Transient response of simple control systems-stability analysis- Frequency response methods-							
Controller tuning-industrial control system							
Expected							
At the end of the course the students will be able to							
i. determine transfer function for simple chemical process systemsii. develop control system block diagram and reduce a given block diagram to							
input/output transfer function model							
iii. analyze the stability of open loop and closed loop systems							
iv							
Reference	5:						
1. Albert C L & Coggan D A (Ed.)., Fundamentals of Industrial Control, ISA, 1992							
2. Bhgade S.S, Nageshwar G.D., Process Dynamics and Control, PHI Learning Pvt. Ltd.							
3. Ceaglske N.H., Automatic Process Control for Chemical Engineers, John Wiley &							
Sons, NY, 1956							
4. Coughanewr D.P., Process System Analysis & Control, McGraw Hill							
5. Eckman D.P., Principles of Industrial Process Control, John Wiley & Sons Inc, NY							
(1946)6. Harriot P., Process Control, Tata McGraw Hill							
0. 7.	Stephanopoulose G., Chemical Process Control, An I	ntroduction to Th	eorv &	Practice.			
	Prentice Hall of India	·····		,			
8.	Tsai T.H., Lane J.W. & Lom C.S., Modern Control T	echniques for the	Process	ing			
	Industries, CRC Press; 1 edition (April 15, 1986)						
	Course Plan						
				Sem.			
Module	Contents	I	Iours	Exam			
				Marks			
	Introduction to process dynamics and control -						
	terms - Laplace transform - transform of simple derivatives and integral - properties of Laplace trans						
Ι	value theorem - initial value theorem - transition		10	15%			
-	and functions – examples - inversion by partial fract						
	of differential equations - qualitative nature of solu	tions - linear					
	open loop systems - first order systems - mercury	thermometer,					

	liquid level and mixing processes - response of these towards					
di	fferent types of forcing functions					
II mosto	vstems in series - interacting and non-interacting types and eneralization of results. Linear open loop second order systems - ercury thermometer in a well and manometer - impulse and ep response of under damped, critically damped and over umped system, their derivation		8	15%		
FIRST INTERNAL EXAMINATION						
III Fla fea de	ontrollers - types, basic principles and transfer functions - the apper nozzle assembly - pneumatic & electronic controllers - D, PI and PD (derivation excluded). Closed loop system – edback control- servo and regulator problems - block diagram evelopment - block diagram reduction	AL	10	15%		
IV Huro	ransient response of simple control systems - step response and fset - introduction to stability of linear systems - Routh- urwitz criterion for stability - root locus technique - plotting the ot locus diagram - transportation lag and its effect on root locus agram		9	15%		
SECOND INTERNAL EXAMINATION						
V di sy bo	troduction to frequency response - substitution rule – Nyquist agram, Nyquist stability criteria. Bode diagram for first order stems - first order systems in series - second order systems - ode stability criterion, gain margin and phase margin		10	20%		
VI me	ontroller tuning- Ziegler-Nichols method - reaction curve ethod - comparison of closed loop responses for different ontroller settings. Supervisory control and data acquisition (CADA) – distributed control system (DCS)		9	20%		
END SEMESTER EXAMINATION						

Question Paper Pattern

Maximum Marks: 100

Exam Duration: 3 Hours

Part A : There shall be **Three questions** uniformly covering Modules 1 and 2, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 15 marks for all the subdivisions put together. $(2 \times 15 = 30 \text{ Marks})$

Part B: There shall be **Three questions** uniformly covering Modules 3 and 4, each carrying 15 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in each main question with a total of 15 marks for all the subdivisions put together. (2 x15=30 Marks)

Part C: There shall be **Three questions** uniformly covering Modules 5 and 6, each carrying 20 marks, of which the student has to answer any **Two questions**. At the most 4 subdivisions can be there in eachmain question with a total of 20 marks for all the subdivisions put together. (2 x20=40 Marks)