Course code	Course Name	L-T-P- Credits	Ye Intro	ar of duction			
ME484	Finite Element Analysis	3-0-0-3	2	016			
Prerequisite : Nil							
Course Objectives: : 1. To introduce the concepts of Mathematical Modeling of Engineering Problems. 2. To appreciate the use of FEA to a range of Engineering Problems.							
Syllabus:							
Historical Background, Mathematical Modeling of field problems in Engineering ,Governing Equations, Basic concepts of the Finite Element Method, Solution of problems from solid mechanics and heat transfer, Fourth Order Beam Equation, Second Order 2D Equations involving Scalar Variable Functions, Equations of elasticity, Natural co-ordinate systems							
 Expected Outcomes: The students will be able to understand different mathematical techniques used in FEM analysis and use them in Structural and thermal problems 							
Text books:							
 Reddy. J.N., An Introduction to the Finite Element Method, 3rd Edition, Tata McGraw- Hill, 2005 Seshu, P, Text Book of Finite Element Analysis, Prentice-Hall of India Pvt. Ltd., New Delhi, 2007 							
Reference books:							
1. Bhatti Asghar M, Fundamental Finite Element Analysis and Applications, John Wiley & Sons,2005 (Indian Reprint 2013)							
 Chandrupatla & Belagundu, Introduction to Finite Elements in Engineering, 3rd Edition, Prentice Hall College Div, 1990 Logan, D.L., A first course in Finite Element Method, Thomson Asia Pvt. Ltd., 2002 Rao, S.S., The Finite Element Method in Engineering, 3rd Edition, Butterworth Heinemann, 2004 Robert D. Cook, David S. Malkus, Michael E. Plesha, Robert J. Witt, Concepts and Applications of Finite Element Analysis, 4th Edition, Wiley Student Edition, 2002. 							
COURSE PLAN							
	2014			End			
Module	Contents	I	Hours	Sem. Exam. Marks			
I	Historical Background – Mathematical Modeling of problems in Engineering – Governing Equations – Discr continuous models – Boundary, Initial and Eigen problems– Weighted Residual Methods – Var Formulation of Boundary Value Problems – Ritz Techniqu	of field rete and Value riational ue	7	15%			
II	Basic concepts of the Finite Element Method. One Dime	ensional	7	15%			

			1		
	Second Order Equations – Discretization – Element types- Linear				
	and Higher order Elements – Derivation of Shape functions and				
	Stiffness matrices and force vectors- Assembly of Matrices				
FIRST INTERNAL EXAMINATION					
	Solution of problems from solid mechanics and heat transfer		15%		
ш	Longitudinal vibration frequencies and mode shapes. Fourth				
	Order Beam Equation – Transverse deflections and Natural				
	frequencies of beams.				
IV	Second Order 2D Equations involving Scalar Variable Functions		15%		
	- Variational formulation - Finite Element formulation -				
	Triangular elements – Shape functions and element matrices and				
	vectors Application to Field Problems - Thermal problems -				
	Torsion of Non circular shafts –Quadrilateral elements – Higher				
	Order Elements				
Order Elements.					
SECOND INTERNAL EXAMINATION					
V	Equations of elasticity – Plane stress, plane strain and				
	axisymmetric problems – Body forces and temperature effects –		20%		
	Stress calculations - Plate and shell elements.				
V1	Natural co-ordinate systems – Isoparametric elements – Shape				
	functions for iso parametric elements – One and two dimensions				
	- Serendipity elements - Numerical integration and application				
	to plane stress problems - Matrix solution techniques – Solutions	7	20%		
	Techniques to Dynamic problems – Introduction to Analysis				
	Software.				

END SEMESTER EXAMINATION

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.