Course code	Course Name	L-T-P- Credits	Year of Introduction
ME482	Energy Conservation and Management	3-0-0-3	2016

Prerequisite: Nil

Course Objectives: :

- 1. To enable analysis of the energy data of industries, energy accounting and balancing
- 2. To know energy audit and methodologies for energy savings
- 3. To understand utilization of the available resources in optimal ways

Syllabus:

Energy, Power, Past & Present scenario of World; National Energy consumption Data, Components of EB billing, Boilers, Furnaces and Thermic Fluid Heaters, Pumps, Fans, Blowers, Energy audit, Energy Economics

Expected Outcomes:

The students will be able to

- i. carryout energy accounting and balancing
- ii. suggest methodologies for energy savings

Text books:

- 1. Callaghn, P.W. Design and Management for Energy Conservation, Pergamon Press, Oxford,1981.
- 2. Witte. L.C., P.S. Schmidt, D.R. Brown, Industrial Energy Management and Utilisation, Hemisphere Publ, Washington, 1988.

References:

- 1. Dryden. I.G.C., The Efficient Use of Energy Butterworths, London, 1982
- 2. Energy Manager Training Manual (4 Volumes) available at www.energymanager training.com, a website of Bureau of Energy Efficiency (BEE), A statutory body under Ministry of Power, Government of India, 2004.
- 3. Murphy. W.R. and G. Mc KAY, Energy Managemen", Butterworths, London 1987.
- **4.** Turner. W.C., Energy Management Hand book, Wiley, New York, 1982.

Module	2014 Contents	Hours	End Sem. Exam. Marks
I	Energy - Power - Past & Present scenario of World; National Energy consumption Data - Environmental aspects associated with energy utilization -Energy Auditing: Need, Types, Methodology and Barriers. Role of Energy Managers. Instruments for energy auditing	7	15%

п	Components of EB billing – HT and LT supply, Transformers, Cable Sizing, Concept of Capacitors, Power Factor Improvement, Harmonics, Electric Motors - Motor Efficiency Computation, Energy Efficient Motors, Illumination – Lux, Lumens, Types of lighting, Efficacy, LED Lighting and scope of Encon in Illumination.	7	15%		
	FIRST INTERNAL EXAMINATION	1.1			
III	Stoichiometry, Boilers, Furnaces and Thermic Fluid Heaters – Efficiency computation and encon measures. Steam: Distribution &Usage: Steam Traps, Condensate Recovery, Flash Steam Utilization, Insulators & Refractories	L ⁷	15%		
IV	Energy efficiency in Pumps, Fans, Blowers, Compressed Air Systems, Refrigeration and Air Conditioning Systems – Cooling Towers – D.G. sets	7	15%		
SECOND INTERNAL EXAMINATION					
v	Energy audit, need, types of energy audit. Energy management (audit) approach-understanding energy costs, Bench marking, energy performance, matching energy use to requirement, maximizing system efficiencies, optimizing the input energy requirements, fuel and energy substitution, energy audit instruments and metering	7	20%		
V1	Energy Economics – Discount Rate, Payback Period, Internal Rate of Return, Net Present Value, Life Cycle Costing –ESCO concepts	7	20%		
END SEMESTER EXAMINATION					

Question Paper Pattern

Maximum marks: 100 Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI

Each question carries 10 marks

Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.