Course code	Course	e Name	L-T-P- Credits	Y Intr	ear of oduction		
ME474	Micro and Nano	Manufacturing	3-0-0-3		2016		
	Prerea	nisite: Nil	0000		2010		
Course Objectives							
1. To give away	eness of different techniqu	es used in micro and na	no manufa	acturin	g		
2. To give in-de	oth idea of the convention	al techniques used in m	icro manu	facturi	ng		
3. To introduce	Non-conventional micro-	nano manufacturing and	l finishing	appro	baches		
4. To introduce	Micro and Nanofabricat	tion Techniques and c	other proc	essing	routes in		
Micro and na	o manufacturing	DOITS	7	Sec. 4			
5. To know dif	rent techniques used in M	licro Joining and the mo	etrology to	ols in	micro and		
nano manufa	turing.	LINDILI					
Svllabus							
Introduction to Prec	ion engineering- Bulk mi	cromachining – Micro-	energy -Ca	arbon 1	Nanotubes		
- Molecular Logic	ates and Nanolevel Bios	sensors - Conventional	Micro M	achini	ng - Non-		
conventional micro-	ano manufacturing and f	inishing approaches - I	Micro and	Nano	Finishing		
Processes - Micro	nd Nanofabrication Tech	nniques - Micro Joinin	ng - Char	acteriz	ation and		
metrology tools.							
Expected outcome							
The students will							
1. get an aware	ess of different techniques	s <mark>us</mark> ed in micro and nan	o manufac	turing.			
2. get in-depth	lea of the conventional tec	c <mark>hn</mark> iques used in micro :	manufactu	ring.			
3. become awa	e about non-conventional	micro-nano manufactui	ring and fi	nishing			
approaches.							
4. get awarenes	on micro and nano finish	ing processes.					
5. understand n	cro and nanofabrication to	echniques and other pro	cessing ro	utes in	micro		
and nano ma	ulaciuring.	miaro joining and the	motrology		n miara		
o. Know about o	inerent techniques used in	i micro joining and the	metrology	toois i	II IIICIO		
and hand ma		etd					
1 Mark I Jack	on Micro and Nano-man	ufacturing Springer 20	06				
2 Mark I Jack	on, Micro-fabrication and	Nano-manufacturing -	Pulsed wa	ater dro	n		
micromachir	ng CRC Press 2006.	i i tuno manaraotaring	i dibed we	uer ur	^p P		
3. Nitaigour Pr	nchand Mahalik. Micro-n	nanufacturing and Nanc	technolog	v. 200	6.		
4. V.K.Jain, M	ro-manufacturing Process	es, CRC Press, 2012.		<i>J</i> , _ • •			
,							
Course Plan							
					End		
Module	Conten	ts	Н	lours	Sem.		
					Exam. Morka		
Introduce	on to Precision anginari	ng macro milling and	miero		WIATKS		
drilling	Micro-electromechanical	systems – merits	and				
I annlicati	ns Micro nhenomenon	in Electro-photogram	hv _	1	15%		
applicati	ns		2.1.5				

	Introduction to Bulk micromachining, Surface micromachining- steps, Micro instrumentation – applications, Micro Mechatronics,	1		
	Nanofinishing – finishing operations. Laser technology in micro manufacturing- Practical Lasers			
	Introduction of technology fundamentals Introduction to Micro-energy and chemical system (MECS), Space Micro-propulsion, e-Beam Nanolithography – important	1		
	techniques, Introduction to Nanotechnology Carbon Nano-tubes – properties and structures, Molecular Logic Gates and Nano level Biosensors - applications	1		
	Introduction to mechanical micromachining, Micro drilling – process, tools and applications	1		
	Micro turning- process, tools and applications, Diamond Micro turning – process, tools and applications	1		
II	Micro milling and Micro grinding – process, tools and applications	1	15%	
	Micro extrusion- process and applications	1		
	Micro bending with Laser	1		
	FIRST INTERNAL EXAMINATION	1		
	Introduction to Non-conventional micro-nano manufacturing	1		
III	Process, principle and applications – Abrasive Jet Micro Machining, WAJMM	1		
	Micro EDM, Micro WEDM, Micro EBM – Process principle, description and applications	1	15%	
	Micro ECM, Micro LBM - Process principle, description and applications	1		
	Focused ion beams - Principle and applications	1		
	Introduction to Micro and Nano Finishing Processes	1		
IV	Magnetorheological Finishing (MRF) processes, Magnetorheological abrasive flow finishing processes (MRAFF) – process principle and applications	1	1	
	Force analysis of MRAFF process,	1		
	Magnetorheological Jet finishing processes	1	15%	
	Working principle and polishing performance of MR Jet Machine	1		
	Elastic Emission Machining (EEM) – machine description, applications	1		
	Ion Beam Machining (IBM) – principle, mechanism of material removal, applications	1		
	Chemical Mechanical Polishing (CMP) – Schematic diagram, principle and applications	1		
	SECOND INTERNAL EXAMINATION			
V	Introduction to Micro Fabrication: basics, flowchart, basic chip	1	20%	

	making processes			
	Introduction to Nanofabrication, Nanofabrication using soft			
	lithography – principle, applications – Examples (Field Effect	1		
	Transistor, Elastic Stamp) Manipulative techniques – process principle, applications			
	Introduction to Carbon nano materials – CN Tubes			
	CN Tubes – properties and applications			
	CN Tube Transistors – Description only		-	
	Diamond - Properties and applications	1		
	CVD Diamond Technology	1		
	LIGA Process	1		
	Laser Micro welding – description and applications, Defects	1		
V1	Electron Beam Micro-welding – description and applications	1		
	Introduction to micro and nano measurement, defining the scale,	1		
	uncertainty	1		
	Scanning Electron Microscopy – description, principle	1		
	Scanning White-light Interferometry – Principle and application	1		
	Optical Microscopy – description, application	1	20%	
	Scanning Probe Microscopy, scanning tunneling microscopy-			
	description, application	1		
	Confocal Microscopy - description, application	1		
	Introduction to On-Machine Metrology	1	1	
	END SEMESTER EXAMINATION]	
	END SEIVIESTER EAAIVIIIVATION			

Question Paper Pattern

Estd.

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.