Cours code	Course Name	-T-P- redits	Year of Introduction
ME47	72 FAILURE ANALYSIS AND DESIGN 3-0	-0-3	2016
	Prerequisite: Nil	MM	
 To un To in 	Objectives Inderstand the failure modes and theories of failure. Include the effect of cyclic loading, fatigue and endurance limit in desig Inderstand the methods for lifecycle prediction.	AL n.	
Syllabus			
Fatigue 1 factors, s cumulati	failure modes and their identification. Static loading, combined stress oading, high cycle fatigue, fatigue testing, S-N-P curves, endurance stress concentration factors and notch sensitivity, fatigue design f ve damage and life prediction, low cycle fatigue, fracture mechanics contact fatigue, high temperatures, corrosion. Shock and impact loadin	diagrams or combin principles	, influence ned stress,
Expected The stude			
The stude i. ana ii. des	ents will be able to alyze real life failure modes and use of theories for failure prediction sign for fatigue and cyclic loading	1	
The stude i. ana ii. des iii. ma	ents will be able to alyze real life failure modes and use of theories for failure prediction sign for fatigue and cyclic loading ke comprehensive life cycle prediction of designed products	1	
The stude i. ana ii. des iii. ma Text Boo 1. Co	ents will be able to alyze real life failure modes and use of theories for failure prediction sign for fatigue and cyclic loading ke comprehensive life cycle prediction of designed products		
The stude i. ana ii. des iii. ma Text Boo 1. Co 2. Sun Referenc 1. Pra	ents will be able to alyze real life failure modes and use of theories for failure prediction sign for fatigue and cyclic loading ke comprehensive life cycle prediction of designed products ks: llins. J. A., Failure of Materials in Mechanical Design, John Wiley & S	ons, 1993	
The stude i. ana ii. des iii. ma Text Boo 1. Co 2. Sun Referenc 1. Pra	ents will be able to alyze real life failure modes and use of theories for failure prediction sign for fatigue and cyclic loading ke comprehensive life cycle prediction of designed products ks: Illins. J. A., Failure of Materials in Mechanical Design, John Wiley & S resh S, Fatigue of Materials, Cambridge University Press, 1998 es Books: Ishant Kumar, Elements of Fracture Mechanics, Wheeler Publishing, 19	ons, 1993	
The stude i. ana ii. des iii. ma Text Boo 1. Co 2. Sun Referenc 1. Pra	ents will be able to alyze real life failure modes and use of theories for failure prediction sign for fatigue and cyclic loading ke comprehensive life cycle prediction of designed products ks : llins. J. A., Failure of Materials in Mechanical Design, John Wiley & S resh S, Fatigue of Materials, Cambridge University Press, 1998 es Books: ashant Kumar, Elements of Fracture Mechanics, Wheeler Publishing, 19 thered C. E., Mechanical Failure Avoidance Strategies and Techniques	ons, 1993	-Hill, 1994 End Sem.
The stude i. ana ii. des iii. ma Text Boo 1. Co 2. Sun Referenc 1. Pra 2. Wi	ents will be able to alyze real life failure modes and use of theories for failure prediction ign for fatigue and cyclic loading ke comprehensive life cycle prediction of designed products ks : llins. J. A., Failure of Materials in Mechanical Design, John Wiley & S resh S, Fatigue of Materials, Cambridge University Press, 1998 es Books: ishant Kumar, Elements of Fracture Mechanics, Wheeler Publishing, 19 thered C. E., Mechanical Failure Avoidance Strategies and Techniques Course Plan	ons, 1993 999 , McGraw Hou	-Hill, 1994 End Sem. rs Exam

п	Fatigue loading, high cycle fatigue, fatigue testing, S-N-P curves-factors affecting S-N-P curve- endurance diagrams	6	20%		
	FIRST INTERNAL EXAM				
III	Cumulative damage and life prediction- Fracture control Fatigue design for combined stress	5 2	15%		
IV	Low cycle fatigue – Cumulative damage in low cycle fatigue Influence factors- Stress concentration factors and notch sensitivity	4	20%		
SECOND INTERNAL EXAM					
V	Fracture mechanics principles in design practice	6	15%		
VI	Contact fatigue, high temperatures, corrosion	4			
	Shock and impact loading.	3	15%		
	END SEMESTER EXAM				

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.