Course code	Course Name	L-T-P- Credits		ear of oduction
ME471	Optimization Techniques	3-0-0-3	2	2016
Prerequis	ite - ME372 Operations Research			
Course O	bjective:	AN	1	
• To	learn the various optimization techniques for effective deci	sion making		
Syllabus:	TECHNOLOGI	CAL	2	
Linear pro	ogramming – integer programming– network models – go	al programn	ning –	dynamic
programm	ing – nonlinear programming – nontraditional optimization			
Expected	Outcome:			
•	e students will be able to understand optimization tech	niques and	apply	them in
	ving practical problems	1		
			-	
Text Bool		-		
 Par Par Par 20 	iley & Sons, Singapore, 1990. neerselvam, R., Operations Research, Prentice Hall of India nnerselvam, R., Design and Analysis of Algorithms, Prentic 07. ha, H. A., Operations Research, Pearson, 2004.			
Reference	e Books:			
Sin 2. Go	nks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M nulation, Third Edition, Pearson Education, Inc., 2001 pel, B. S. and Mittal, S. K., Operations Research, Pragati Pra vindran, Phillips and Solberg, Operations Research Princip	ikashan, Mee	erut, 19	999.
So	ns, 1987 nivasan, G. "Operations Research-Principles and Application			•
Pv	t. Ltd. 2014			
	Course Plan			F 1
Module	Contents	E	Iours	End Sem. Exam. Marks
Ŧ	Review of linear programming– revised simplex method		1	1 1 15%
Ι	Dual simplex method		1 1	

		1		
	Sensitivity analysis – changes affecting feasibility – changes affecting optimality	1 1 1 1		
II	Integer programming – importance – applications	1		
	Branch and bound technique	1		
	Gomory's cutting plane method	1 1 1	15%	
	Solution to travelling salesman problem	1		
	FIRST INTERNAL EXAMINATION	-		
ш	Network models – minimal spanning tree problem	1		
	PRIM's algorithm	1		
	Kruskal's algorithm	1		
	Shortest route problem –applications	1	15%	
	Systematic method	1		
	Dijkstra's algorithm	1		
	Floyd's algorithm	1		
	Goal programming – goal programming formulation-application.	1 1	15%	
IV	Simplex method for solving goal programming	1 1		
	Dynamic programming – terminologies – forward and backward recursion –applications	1		
	Shortest path problems	1		
	SECOND INTERNAL EXAMINATION			
	Nonlinear programming – convex, quasi-convex, concave and unimodal functions – theory of constrained optimization1Lagrangean method1		20%	
V				
	Kuhn-Tucker conditions	1 1		
	Nontraditional optimization – computational complexity- Introduction to metaheuristics – areas of application	1 1		
VI	Genetic algorithm (GA) – terminologies – steps and examples 1		20%	
	Tabu search (TS) – steps and examples	1	_0/0	
		1		
	Simulated annealing (SA) – steps and examples			
	Simulated annealing (SA) – steps and examplesAnt colony optimization (ACO) – steps and examples -Particle	<u> </u>		

Question Paper Pattern

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

