Course code	Course Name	L-T-P- Credits	Year Intro	[.] of oduction
ME4	9 FINITE ELEMENT ANALYSIS	3-0-0-3		016
	Prerequisite : Nil	F A A		
2. To ur		ransfer probl	ems.	
Syllabus Introducti problems; functions; using mir	on; Brief history; Review of elasticity; Direct approach;1D Beam elements; Plane truss; Coordinate transformations; Inter Variational methods; Strong and weak form; Rayleigh Ritz imization of potential; Consistent nodal loads; Higher order Weighted residual methods; FEA software packages.	bar element polation fun- method; FE	t; Anal ctions; E formu	Shape lation
i. unc	outcome its will be able to erstand the mathematical background of FEM. e real life problems using finite element analysis	7		
2004 2. Hutt 3. Loga	ss: drupatla T R., Finite Element Analysis for Engineering and Tec on D V., Fundamentals of Finite Element Analysis, Tata McGra n D L., A first course in the Finite Element Method, Thomson-I 1 P., Text Book of Finite Element Analysis, PHI Learning Pvt. 1	w-Hill, 2005 Engineering,	j	y Press,
Elen	s Books: R D., Malkus D S., Plesha M E.,Witt R J., Concepts and Analy ent Applications, John Wiley & Sons,1981 y J N., An introduction to the Finite Element Method, McGraw			
	Course	1		
Module	Contents		Hours	End Sem. Exam Marks
I	Introduction to Finite Element Method (FEM)- Brief history- A of FEA- Advantages and disadvantages. Review of elasticity- Strain displacement relations- Compatibil strain relations- Boundary conditions- Plane stress, plane strain axisymmetry.	ity-Stress	2	15%

	Direct approach-1D bar element- element stiffness- Assembly of elements- properties of [K] matrix- Treatment of boundary conditions- Stress computation.				
II	Analogous problems of torsion, heat conduction and laminar pipe flow. Beam elements- FE formulation-element stiffness matrix- boundary conditions.		- 20%		
	Plane truss- Element formulation-Co ordinate transformation- Local and global co ordinates- Stress calculations.				
	FIRST INTERNAL EXAMINATION		I		
III	Interpolation functions-Shape functions- Lagrange interpolation- 1D linear and quadratic element	3	15%		
	Variational methods: Functionals- Strong and weak form- Essential and natural boundary conditions.	3	1.5 /0		
	Principle of stationary potential energy- Rayleigh Ritz method.	3	3		
IV	FE formulation using minimization of potential- B matrix- Element matrices for bar element- Consistent nodal loads.		20%		
	SECOND INTERNAL EXAMINATION				
V	Higher order elements- Quadratic and cubic elements-Pascal's triangle- Serendipity elements.	3	1.50/		
·	Iso parametric elements, Natural coordinates, Area co ordinates- Quadrilateral elements-Jacobian matrix-Gauss quadrature.		15%		
VI	Weighted residual method: Galerkin FE formulation. Axially loaded bar- Heat flow in a bar	5	5 2 15%		
	Structure of FEA software package. Introduction to Modal analysis, non linear analysis and coupled analysis.	2			
	END SEMESTER EXAMINATION				

Question Paper Pattern

2014

Maximum marks: 100,

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) Time: 3 hrs

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

