Course code	Course Name	L-T-P- Credits	Year of Introduction
ME469	FINITE ELEMENT ANALYSIS	$\mathbf{3 - 0 - 0 - 3}$	$\mathbf{2 0 1 6}$
Prerequisite : Nil			
Course Objectives 1. To learn the mathematical background of finite element methods. 2. To understand the basics of finite element formulation. 3. To practice finite element methodologies through structural and heat transfer problems.			
Syllabus Introduction; Brief history; Review of elasticity; Direct approach;1D bar element; Analogous problems; Beam elements; Plane truss; Coordinate transformations; Interpolation functions; Shape functions; Variational methods; Strong and weak form; Rayleigh Ritz method; FE formulation using minimization of potential; Consistent nodal loads; Higher order elements; Iso parametric elements; Weighted residual methods; FEA software packages.			

Expected outcome

The students will be able to
i. understand the mathematical background of FEM .
ii. solve real life problems using finite element analysis

Text Books:

1. Chandrupatla T R., Finite Element Analysis for Engineering and Technology, University Press, 2004
2. Hutton D V., Fundamentals of Finite Element Analysis, Tata McGraw-Hill, 2005
3. Logan D L., A first course in the Finite Element Method, Thomson-Engineering, 2012
4. Seshu P., Text Book of Finite Element Analysis, PHI Learning Pvt. Ltd., 2003

References Books:

1. Cook R D., Malkus D S., Plesha M E.,Witt R J., Concepts and Analysis of Finite Element Applications, John Wiley \& Sons, 1981
2. Reddy J N., An introduction to the Finite Element Method, McGraw- Hill, 2006

| Course | | | Hours |
| :---: | :--- | :---: | :---: | | End |
| :---: |
| Sem. |
| Exam |
| Module |$\left|\begin{array}{cc}\text { Marks }\end{array}\right|$

	Direct approach-1D bar element- element stiffness- Assembly of elements- properties of [K] matrix- Treatment of boundary conditionsStress computation.	4	
II	Analogous problems of torsion, heat conduction and laminar pipe flow. Beam elements- FE formulation-element stiffness matrix- boundary conditions.	4	20\%
	Plane truss- Element formulation-Co ordinate transformation- Local and global co ordinates- Stress calculations.	4	
FIRST INTERNAL EXAMINATION			
III	Interpolation functions-Shape functions- Lagrange interpolation- 1D linear and quadratic element	3	15\%
	Variational methods: Functionals- Strong and weak form- Essential and natural boundary conditions.	3	
IV	Principle of stationary potential energy- Rayleigh Ritz method.	3	20\%
	FE formulation using minimization of potential- B matrix- Element matrices for bar element- Consistent nodal loads.	4	
SECOND INTERNAL EXAMINATION			
V	Higher order elements- Quadratic and cubic elements-Pascal's triangleSerendipity elements.	3	15\%
	Iso parametric elements, Natural coordinates, Area co ordinatesQuadrilateral elements-Jacobian matrix-Gauss quadrature.	5	
VI	Weighted residual method: Galerkin FE formulation. Axially loaded barHeat flow in a bar	5	15\%
	Structure of FEA software package. Introduction to Modal analysis, non linear analysis and coupled analysis.	2	
END SEMESTER EXAMINATION			

Question Paper Pattern

Maximum marks: 100,

Time: 3 hrs
The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II
Each question carries 10 marks
Students will have to answer any three questions out of 4 (3X10 marks $=30$ marks)

Part B

There should be 2 questions each from module III and IV
Each question carries 10 marks
Students will have to answer any three questions out of 4 (3X10 marks $=30$ marks)

Part C

There should be 3 questions each from module V and VI
Each question carries 10 marks
Students will have to answer any four questions out of 6 (4 X 10 marks $=40$ marks)
Note: Each question can have a maximum of four sub questions, if needed.

