Course code	Course Name	L-T-P- Credits		ar of duction		
ME466	Computational Fluid Dynamics	3-0-0-3		016		
		5-0-0-5		010		
 Prerequisite : ME203 Mechanics of fluids Course Objectives: : To introduce governing equations of viscous fluid flows To introduce numerical modelling and its role in the field of fluid flow and heat transfer To enable the students to understand the various discretization methods, solution procedures and turbulence modelling. To create confidence to solve complex problems in the field of fluid flow and heat transfer using high speed computers. Syllabus: Introduction to CFD, Governing equations, Steady and unsteady flows, Analytical solution of a one dimensional convection diffusion equation, Statistical representation of turbulent flows, Different types of turbulence models, Grid generation, Pressure-velocity decoupling for 						
ExpectedThe studei.Grii.Harrowiii.KarrowText bool1.Pa2.Vertice	Outcomes: Ints will be able to asp numerical modelling and its role in the field of fluid oply the various discretization methods, solution procedu solve flow and heat transfer problems now established engineering methods to solve complex of tankar Suhas V., Numerical Heat Transfer and Fluid Flow ersteeg H.K. &Malalasekera W., An introduction to Comp ngman,2008	ures and turb engineering p y, Taylor &Fr	ulence r roblem ancis,19	nodeling		
М	e books: aderson Dale A., Tannehill John C. &Pletcher Richard H., echanics and Heat Transfer, Taylor & Francis, 2016 etcher C.A.J., Computational Techniques for Fluid Dynar	- /				
Module	2014 Contents		Hours	End Sem. Exam. Marks		
I	Introduction to CFD, Historical background, an advantages. Basic steps of CFD. Meshes, Struct unstructured mesh, Classification of structured grids. equations: continuity and momentum equations. Ea transport of a scalar. Potential, Euler and Navier-Stokes e	Governing quation of	7	15%		
II	Steady and unsteady flows. Typical boundary condition Dirichlets and Neumann conditions. TDMA method.,		7	15%		

	problem up to four unknowns using TDMA.			
	Cell centred finite volume discretisation of terms of governing			
	equations such as time derivative, convective and diffusion.			
	FIRST INTERNAL EXAMINATION			
III	Analytical solution of a one dimensional convection diffusion	lytical solution of a one dimensional convection diffusion		
	equation. Upwind, central and blended difference approximations		150/	
	for convection term, QUICK scheme. Implicit, explicit and Crank-		15%	
	Nicolson schemes			
	Statistical representation of turbulent flows: Homogeneous	¥		
IV	turbulence and isotropic turbulence, General Properties of turbulent	7		
1,	quantities, Reynolds average Navier stokes (RANS) equation,		15%	
	Closure problem in turbulence			
	SECOND INTERNAL EXAMINATION			
	Turbulence modeling, Different types of turbulence models:			
V	advantages and disadvantages. Structured Grid generation -		20%	
	Unstructured Grid generation– Mesh refinement – Adaptive mesh			
VI	Pressure-velocity decoupling for incompressible flows - SIMPLE			
	and PISO algorithms. Density based solutions for compressible			
	flow, TVD and Van-leerschemes for compressible flow. Typical			
	results of CFD analysis. Stream lines, method for generating stream		20%	
	line, velocity contours and pressure contours, Method of drawing a		_0/0	
	velocity vector. Solution of Lagrangian coordinates of a fluid			
	particle. Commercial CFD packages.			
END SEMESTER EXAMINATION				
	END SEIVESTER EXAMINATION			

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.