Course code		L-T-P- Credits		ar of duction
ME461	Aerospace Engineering 3	8-0-0-3	2	016
	Prerequisite : Nil			
• To	bjectives: : understand the fundamentals of aerospace engineering provide an understanding of flight instruments	AN	Ą	
Syllabus:		A		
The atmo	sphere, airfoil theory, 2D, 3D or Finite aero foils Propeller ruments, stability of aircrafts, wind tunnel testing	s, Aircra	aft perf	ormance,
Expected	Outcomes:			
The studen	nts will be able to i. Identify, formulate and solve aerospace engineering prob i. Perform analysis of flight dynamics of aircrafts	lems		
2. Ar	Ks: C. Kermode, Mechanics of flight, Prentice Hall, 2007 Iderson, Fundamentals of Aerodynamics, McGraw-Hill, 2010 IJ Pallett, Aircraft Instruments and Integrated systems, Longm	an,1992		
Reference 1. Ho	books: bughton and brock, Aerodynamics for Engineering Student, Ho	odder & S	Stought	on,1977
	COURSE PLAN			
Module	Contents	H	Hours	End Sem. Exam. Marks
Ι	The atmosphere-characteristics of troposphere , stratosph thermosphere, and ionosphere- pressure, temperature and de variations in the atmosphere. Application of dimensional ana – aerodynamic force – model study and similitude. 2D aero -Nomenclature and classification- pressure distribution inviscid and real flows- momentum and circulation theor aerofoil- characteristics.	nsity lysis foils n in	8	15%
п	3D or Finite aero foils – effect of releasing the wingtips- tip vortices- replacement of finite wing by horse shoe very system, lifting line theory-wing load distribution – aspect re- induced drag calculation of induced drag from moment considerations. Skin friction and from drag- changes in the wing plan shape	ertex ratio, ntum	7	15%

III	Propellers – momentum and blade element theories –propeller coefficients and charts. Aircraft performance-straight and level flight –power required and power available graphs for propeller and jet aircraft	6	15%
IV	Gliding and climbing –rate of climb-service and absolute ceilings-gliding angle and speed of flattest glide takeoff and landing performance – length of runway required- aircraft ground run- circling flight – radius of tightest turn-jet and rocket assisted take –off high lift devices-range and endurance of airplanes- charts for piston and jet engine aircrafts.	7	15%
	SECOND INTERNAL EXAMINATION	h. And	·
v	Flight Instruments-airspeed indicator, calculation of true air speed-altimeter, gyrohorizon -direction indicator-vertical speed indicator –turn and back indicator-air temperature indicator. (Brief description and qualitative ideas only). Ideas on stability-static and dynamic stability- longitudinal, lateral and directional stability- controls of an aero plane- aerodynamic balancing of control surfaces- mass balancing (Qualitative ideas only).	7	20%
V1	Principles of wind tunnel testing –open and closed type wind tunnels-wind tunnel balances supersonic wind tunnels. Study of subsonic, Transonic, and supersonic aircraft engines (Description with figures Only).Elementary ideas on space travel-calculation of earth orbiting and escape velocities ignoring air resistance and assuming circular orbit.	7	20%

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.