Course code	Course Name	L-T-P- Credits	Year of Introduction
ME461	Aerospace Engineering	$\mathbf{3 - 0 - 0 - 3}$	$\mathbf{2 0 1 6}$
Prerequisite : Nil			

Course Objectives: :

- To understand the fundamentals of aerospace engineering
- To provide an understanding of flight instruments

Syllabus:

The atmosphere, airfoil theory, 2D, 3D or Finite aero foils Propellers, Aircraft performance, Flight Instruments, stability of aircrafts, wind tunnel testing

Expected Outcomes:

The students will be able to
i. Identify, formulate and solve aerospace engineering problems
ii. Perform analysis of flight dynamics of aircrafts

Text books:

1. A.C. Kermode, Mechanics of flight, Prentice Hall, 2007
2. Anderson, Fundamentals of Aerodynamics, McGraw-Hill, 2010
3. EHJ Pallett, Aircraft Instruments and Integrated systems, Longman, 1992

Reference books:

1. Houghton and brock, Aerodynamics for Engineering Student, Hodder \& Stoughton,1977

| COURSE PLAN | | | Contents |
| :---: | :--- | :---: | :---: | Hours | End |
| :---: |
| Sem. |
| Exam. |
| Marks |$|$

III	Propellers - momentum and blade element theories -propeller coefficients and charts. Aircraft performance-straight and level flight -power required and power available graphs for propeller and jet aircraft	$\mathbf{6}$	$\mathbf{1 5 \%}$
IV	Gliding and climbing -rate of climb-service and absolute ceilings-gliding angle and speed of flattest glide takeoff and landing performance - length of runway required- aircraft ground run- circling flight - radius of tightest turn-jet and rocket assisted take -off high lift devices-range and endurance of airplanes- charts for piston and jet engine aircrafts.	$\mathbf{7}$	$\mathbf{1 5 \%}$
	Flight Instruments-airspeed indicator, calculation of true air speed-altimeter, gyrohorizon -direction indicator-vertical speed indicator -turn and back indicator-air temperature indicator. (Brief description and qualitative ideas only). Ideas on stability- static and dynamic stability- longitudinal, lateral and directional stability- controls of an aero plane- aerodynamic balancing of control surfaces- mass balancing (Qualitative ideas only).	$\mathbf{7}$	$\mathbf{2 0 \%}$
V1	Principles of wind tunnel testing -open and closed type wind tunnels-wind tunnel balances supersonic wind tunnels. Study of subsonic, Transonic, and supersonic aircraft engines (Description with figures Only).Elementary ideas on space travel-calculation of earth orbiting and escape velocities ignoring air resistance and assuming circular orbit.	$\mathbf{7}$	$\mathbf{2 0 \%}$
END SEMESTER EXAMINATION	Question Paper Pattern		

Maximum marks: 100

Time: 3 hrs
The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II
Each question carries 10 marks
Students will have to answer any three questions out of 4 (3X10 marks $=30$ marks)

Part B

There should be 2 questions each from module III and IV
Each question carries 10 marks
Students will have to answer any three questions out of 4 (3 X 10 marks $=30$ marks)

Part C

There should be 3 questions each from module V and VI
Each question carries 10 marks
Students will have to answer any four questions out of 6 (4 X 10 marks $=40$ marks)
Note: Each question can have a maximum of four sub questions, if needed.

