Course co	de Course Name	L-T-P- Credits	Year of Introduction		
ME409	COMPRESSIBLE FLUID FLOW	2-1-0-3	2016		
Prerequ	isite: ME205 Thermodynamics		1		
Course Ob • To • To • To	jectives: Tamiliarize with behavior of compressible gas flow. Inderstand the difference between subsonic and supersonic flow Tamiliarize with high speed test facilities				
Syllabus Introductio Irreversibl Flow thro visualizati	on to Compressible Flow, Wave propagation, One dimensioned is discontinuity in supersonic flow, Flow in a constant area duct ugh constant area duct with heat transfer (Rayleigh Flow on and measurement, measurement in compressible flow, Window	onal steady ise t with friction), Compressib l tunnels	entropic flow, (Fanno Flow), ble flow field		
Expected of The studen i. ii. iii. iv. Data book/	utcome: s will be able to Formulate and solve problems in one -dimensional steady com- isentropic nozzle flow, constant area flow with friction (Fanno with heat transfer (Rayliegh flow). Derive the conditions for the change in pressure, density and te normal shock. Determine the strength of oblique shock waves on wedge shape Know the various measuring instruments used in compressible	pressible flow flow) and con mperature for ed bodies and o flow	including: stant area flow flow through a concave corners		
 Data book/Gas tables: 1. Yahya S. M., Gas Tables, New Age International, 2011 2. Balachandran P., Gas Tables, Prentice-Hall of India Pvt. Limited, 2011 					
 Text Book Balacha Rathaki Yahya S Internat 	ndran P., Fundamentals of Compressible Fluid Dynamics, PHI ishnan E., Gas Dynamics, PHI Learning, 2014 M., Fundamentals of Compressible Flow with Aircraft and R ional Publishers, 2003	Learning. 200 ocket Propulsi	06 Ion, New Age		
References 1. Ander 2. Shapiro	Books : son, Modern compressible flow, 3e McGraw Hill Education of Dynamics and Thermodynamics of Compressible Flow – Vo	on, 2012 11., John Wild	ey & Sons,1953		

Course Plan					
Module	Contents		End Sem. Exam		
	ADI ADDITI KATA	N.A.	Marks		
Ι	Introduction to Compressible Flow- Concept of continuum-system and control volume approach- conservation of mass, momentum and energy- stagnation state- compressibility-Entropy relations. Wave propagation- Acoustic velocity-Mach number-effect of Mach number on compressibility- Pressure coefficient-physical difference between incompressible, subsonic, sonic and supersonic flows- Mach cone-Sonic boom-Reference velocities- Impulse function-adiabatic energy equation-representation of various flow regimes on steady flow adiabatic ellipse.	8	15%		
Π	One dimensional steady isentropic flow- Adiabatic and isentropic flow of a perfect gas- basic equations- Area-Velocity relation using 1D approximation-nozzle and diffuser-mass flow rate-chocking in isentropic flow-flow coefficients and efficiency of nozzle and diffuser- working tables-charts and tables for isentropic flow- operation of nozzle under varying pressure ratios –over expansion and under expansion in nozzles.	7	15%		
FIRST INTERNAL EXAM					
ш	Irreversible discontinuity in supersonic flow- one dimensional shock wave- stationary normal shock- governing equations- Prandtl- Meyer relations- Shock strength- Rankine- Hugoniot Relation- Normal Shock on T-S diagram- working formula- curves and tables-Oblique shock waves - supersonic flow over compression and expansion corners (basic idea only).	7	15%		
IV	Flow in a constant area duct with friction (Fanno Flow) – Governing Equations- Fanno line on h-s and P-v diagram- Fanno relation for a perfect gas- Chocking due to friction- working tables for Fanno flow- Isothermal flow(elementary treatment only)	6	15%		
SECOND INTERNAL EXAM					
V	Flow through constant area duct with heat transfer (Rayleigh Flow)- Governing equations- Rayleigh line on h-s and P-v diagram- Rayleigh relation for perfect gas- maximum possible heat addition- location of maximum enthalpy point- thermal chocking- working tables for Rayleigh flow.	6	20%		
VI	Compressible flow field visualization and measurement- Shadowgraph-Schlieren technique- interferometer- subsonic compressible flow field -measurement (Pressure, Velocity and Temperature) – compressibility - correction factor- hot wire anemometer- supersonic flow measurement- Shock tube-Rayleigh Pitot tube- wedge probe- stagnation temperature probe- temperature recovery factor –Kiel probe - Wind tunnels – closed and open type- END SEMESTER EXAM	8	20%		

Question Paper Pattern

2014