Course code	Course Name	L-T-P- Credits	Year of Introduction
ME403	ADVANCED ENERGY ENGINEERING	3-0-0-3	2016
Prereauisite:	Nil preserver	T & 1	

Course Objectives:

- 1. To give an idea about global energy scenario and conventional energy sources
- 2. To understand solar, wind and Biomass energy
- 3. To know concepts of other renewable energy sources
- 4. To create awareness on the impacts of energy conversion and importance of sustainable energy

Syllabus

Global and Indian energy scenario, conventional energy sources, environmental effect of energy conversion, renewable energy sources- solar, wind, biomass, brief account of other renewable energy sources –geothermal, tidal, MHD, hydrogen, fuel cells, small scale hydro power plants. Environmental impact and Sustainability issues.

Expected outcome:

The students will be able to

- i. Understand energy scenario and the environmental effects of energy conversion.
- ii. Become aware of different renewable energy sources and choose sustainable energy for

Text Books:

- 1. Jefferson W Tester et.al., Sustainable Energy: Choosing Among Options, PHI, 2006
- 2. P K Nag, Power Plant Engineering, TMH, 2002
- 3. Tiwari G N, Ghosal M K, Fundamentals of renewable energy sources, Alpha Science International Ltd., 2007

References Books:

- 1. David Merick, Richard Marshall, Energy, Present and Future Options, Vol.I & II, John Wiley & Sons, 2001
- 2. Godfrey Boyle, Renewable Energy : Power for a Sustainable Future, Oxford University Press, 2012
- 3. Roland Wengenmayr, Thomas Buhrke, 'Renewable Energy: Sustainable energy concepts for the future, Wiley VCH, 2012
- 4. Twidell J W and Weir A D, Renewable Energy Resources, UK, E&F.N. Spon Ltd., 2006

Course Plan				
Module	Contents 2014	Hours	End Sem. Exam Marks	
Ι	Introduction to the course. Global and Indian energy resources. Energy Demand and supply. Components, layout and working principles of steam, hydro, nuclear, gas turbine and diesel power plants	7	15%	
п	Solar Energy- passive and active solar thermal energy, solar collectors, solar thermal electric systems, solar photovoltaic systems. Economics of solar power. Sustainability attributes.	7	15%	
	FIRST INTERNAL EXAM	I		

III	Wind Energy-Principle of wind energy conversion system, wind data and energy estimation, wind turbines, aerodynamics of wind turbines, wind power economics. Introduction to solar-wind hybrid energy systems		15%		
IV	Biomass Energy – Biomass as a fuel, thermo-chemical, bio-chemical and agro-chemical conversion of biomass- pyrolysis, gasification, combustion and fermentation, transesterification, economics of biomass power generation, future prospects.	6	15%		
SECOND INTERNAL EXAM					
V	Other Renewable Energy sources – Brief account of Geothermal, Tidal, Wave, MHD power generation, Small, mini and micro hydro power plants. Fuel cells – general description, types, applications. Hydrogen energy conversion systems, hybrid systems- Economics and technical feasibility		20%		
VI	Environmental impact of energy conversion – ozone layer depletion, global warming, greenhouse effect, loss of biodiversity, eutrophication, acid rain, air and water pollution, land degradation, thermal pollution, Sustainable energy, promising technologies, development pathways	7	20%		
END SEMESTER EXAM					

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.