Course cod	le Course Name	L-T-P- Credits	Year of Introduction			
ME401	DESIGN OF MACHINE ELEMENTS - I	3-1-0-4	2016			
Prerequisite:	ME201 Mechanics of Solids	T & A	4			
Course Obj	ectives:	AN	A			
To rev	view concepts of statics and strength of materials.	LIV	1			
To int	• To introduce fundamental approaches to failure prevention of components.					
• To pro	ovide knowledge in the design of common machine elemen	ts such as faste	eners, shafts,			
spring	s cotter joints and couplings.	\sim				
Syllabus Introduction	to Design, Materials and their properties, Theories of	Failure, Sho	ck and impact			
loads,Thread	loads, Threaded Joints, Bolted joints, Design of riveted joints, Cotter and Knuckle joints, Design of					
welded joints, Helical springs, Leaf springs, Shafting, Design of Coupling.						
Expected ou The students i. Find cond ii. Devi Text Books: 1. Ja 2. R	will be able to out various stresses induced in a machine element under dif itions. se machine components for its conceptual design. alaludeen , Machine Design, Anuradha Publications, Chenn . L. Norton, Machine Design – An Integrated Approach, Pe	fferent type of ai,2014 earson Educatio	loading on, 2001			
3. V	B.Bhandari, Design of Machine elements, McGraw Hill, 2	2010				
Data books	permitted for reference in the final examination:					
1. K D 2. N H 3. P	. Mahadevan, K.Balaveera Reddy, Design Data Hand Book istributors, 2013 arayanaIyengar B.R & Lingaiah K, Machine Design Data H ill/Suma Publications, 1984 SG Design Data, DPV Printers, Coimbatore, 2012	, CBS Publishe Iandbook, Tata	ers & 1 McGraw			
References B	ooks:	1				
1. J. 2. Ju W 3. M 4. Ra	E. Shigley, Mechanical Engineering Design, McGraw Hill, vinall R.C & Marshek K.M., Fundamentals of Machine Cor iley,2003 . F. Spotts, T. E. Shoup, Design of Machine Elements, Pear ijendra Karwa, Machine Design, Laxmi Publications.2006	2003 nponent Desig son Education,	n, John 2006			
	<u>, , , , , , , , , , , , , , , , , , , </u>					

Course Plan				
Module	Contents	Hours	End Sem. Exam	
	ADI ADDILL KALA		Marks	
I	Introduction to Design- Definition, steps in design process, preferred numbers, standards and codes in design Materials and their properties- Elastic and plastic behaviour of metals, ductile and brittle behaviour, shear, bending and torsional stresses, combined stresses, stress concentration factor.		15%	
II	'heories of Failure- Guest's Theory, Rankine's Theory, St. Venant's 'heory, Haigh's Theory, and Von Mises and Hencky Theory.5		15%	
	Shock and impact loads, fatigue loading, endurance limit stress, factors affecting endurance limit, factor of safety	6	1370	
FIRST INTERNAL EXAM				
ш	Threaded Joints- Terminology, thread standards, types of threads, stresses in screw threads	3	150/	
	Bolted joints- effect of initial tension, eccentric loading, design of bolts for static and fatigue loading, gasketed joints, power screws	4		
IV	Design of riveted joints- Material for rivets, modes of failure, efficiency of joint, design of boiler and tank joints, structural joints		15%	
	Cotter and Knuckle joints- Gib and Cotter Joint, analysis of knuckle joint.			
	Design of welded joints- welding symbols, stresses in fillet and butt welds, Butt joint in tension, fillet weld in tension, fillet joint under torsion, fillet wed under bending, eccentrically loaded welds.	fillet and butt et joint under 4 lds.		
SECOND INTERNAL EXAM				
V	Springs- classification, spring materials, stresses and deflection of helical springs, axial loading, curvature effect, resilience, static and fatigue loading, surging, critical frequency, concentric springs, end construction.	5 20% 4		
	Leaf springs- Flat springs, semi elliptical laminated leaf springs, design of leaf springs, nipping			
VI	Shafting- material, design considerations, causes of failure in shafts, design based on strength, rigidity and critical speed, design for static and fatigue loads, repeated loading, reversed bending	5 20%		
	Design of Coupling- selection, classification, rigid and flexible coupling, design of keys and pins	3		
END SEMESTER EXAM				

Question paper pattern

Time: 3 hrs

Use of approved data book permitted

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 3 questions from module I and II and at least 1 question from each module Each question carries 15 marks Students will have to answer any 2 questions out of 3 (2X15 marks =30 marks)

Part B

There should be 3 questions from module III and IV and at least 1 question from each module Each question carries 15 marks

Students will have to answer any 2 questions out of 3 (2X15 marks = 30 marks)

Part C

There should be 3 questions from module V and VI and at least 1 question from each module Each question carries 20 marks

Students will have to answer any 2 questions out of 3 (2X20 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

2014