Course code.	Course Name	L-T-P- Credits	Year of Introduction		
ME374	THEORY OF VIBRATIONS	3-0-0-3	2016		
Prerequisite: ME304 Dynamics of machinery					
Course Object	ives	LAU	(1		
 To understand the principles of vibration theory. To introduce techniques for solving vibration problems. 					
• To enable development of mathematical model for engineering problems in vibrations.					
Syllabus	OTATYLINOIT	4			
Introduction to mechanical vibrations; Analysis of free, forced single degree of freedom systems;					
Damping; Vibration measuring instruments; Multi degree of freedom systems; Eigen value problems;					
Lagrange's equ	ation; Vibration of continuous systems; Transient vibratio	ns; Introduct	tion to non linear		
and random vit	prations.				
Expected outc	ome				
The students w	ill be able to				
i. formulat	e differential equations of motion of mechanical systems				
ii. determin iii. understa	e the natural frequencies of multi degree of freedom syster nd non linear and random vibrations.	ns			
Text Books:					
1. Graham Kelly S, Schaum's outline of Mechanical Vibrations, Schaum's Outlines, 1996					
2. Singiresu S Rao, Mechanical Vibrations, Pearson, 2016					
3. Thomson, W T, Theory of Vibration with Applications., Prentice Hall India, 1981					
References Bo	oks:				
1. Den Hartog, J P, Mechanical Vibrations, McGrawHill, 1956.					
2. Leonard Meirovitch, Elements of Vibration Analysis, McGraw Hill, 1975.					

	Course Plan				
Module	Contents		End Sem. Exam		
	ADI ADDILLI KALA	N.A	Marks		
	Introduction to mechanical vibrations- Simple harmonic motion- Natural frequency -Equation of motion Energy method-Rayleigh method	2	2007		
I	e vibration of single degree of freedom (DOF) systems with pping- Viscous damping- Logarithmic decrement. Ilomb damping-Energy dissipated by damping- Structural damping 4 uivalent viscous damping.		20%		
п	Forced harmonic vibration- Magnification factor-Transmissibility- Vibration isolation-Base excitation-Rotating unbalance- whirling of shafts- Resonance	5	15%		
Vibration measuring instruments. Seismometer-Accelerometer					
Two degree of freedom systems-Normal mode vibration-Principal co-					
III	ordinates-Coordinate coupling.		150/		
	Beat phenomenon-Undamped vibration absorbers- Vibration dampers.	aped vibration absorbers- Vibration dampers. 2			
IV	Multi degree of freedom systems- Matrix formulation- Influence coefficients-Flexibility matrix-Stiffness matrix5Eigen Value problem:Eigen value and Eigen vectors-Frequency mode shape -Modal analysis.4		2004		
			20%		
SECOND INTERNAL EXAM					
	Lagrange's equation- Solution to problems using Lagrange's equation.	4			
V	Vibration of continous systems-Vibrating strings- Longitudinal vibration of rods—Torsional vibration of rods		15%		
VI	Transient vibrations- Impulse excitation- Convolution integral.	4			
	Introduction to non linear vibrations and random vibrations		1.3.70		
END SEMESTER EXAM					
	2014				

Question Paper Pattern

Time: 3 hrs

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

2014