Course code	Course Name	L-T-P- Credits	Year of Introduction
ME372	Operations Research	3-0-0-3	2016
Prerequis	site -Nil		
• To	bjectives: understand the role of operation research in decision mak impart the various operation research techniques for effect	0	olving.
Operation	s research models, linear programming, transportation programming, transportation problem, network analysis, queuing theory, inventory community inventory.		-
Expected	Outcome:		
	e students will be able to understand operations research to a second second second second second second second	techniques and	apply them in
Text Bool	ks:		
 Pa Pa Pa 20 Sri Pv 	iley & Sons, Signapore, 1990. neerselvam, R., Operations Research, Prentice Hall of Indinnerselvam, R., Design and Analysis of Algorithms, Prent 07. inivasan, G. "Operations Research-Principles and Applicat t. Ltd., 2010. ha, H. A., Operations Research, Pearson, 2004.	ice Hall of Ind	ia, New Delhi,
Sin 2. Go 3. Ra	e Books: inks, J., Carson, J. S., Nelson, B. L., and Nicol, D. M., Dis mulation, Third Edition, Pearson Education, Inc., 2001. bel, B. S. and Mittal, S. K., Operations Research, Pragati P avindran, Phillips and Solberg, Operations Research Princi- ns, 1987.	rakashan, Mee	rut, 1999.
	Course Plan		
Module	Contents	Ho	urs End Sem. Exam. Marks
	Basics of operations research–OR models–applications.	1	l
Ι	Linear programming – problem formulation	1	1370
	Graphical method	1	
	Simplex method	1	

	Big-M method	1		
	Two-phase method	1		
	Duality in linear programming	1		
II	Transportation problem – formulation – balanced & unbalanced transportation problems	1		
	North west corner rule – least cost method			
	Vogel's method –stepping stone method		15%	
	MODI method			
	Assignment problem – formulation – optimal solution, Hungarian algorithm	1		
	Variants of assignment problems	1	-	
	Traveling salesman problem.	1		
	FIRST INTERNAL EXAMINATION			
	Sequencing problem_ terminology and notations _ assumptions _			
	problems with <i>n</i> jobs through two machines	1		
	Problems with <i>n</i> jobs through three machines	1		
	Problems with <i>n</i> jobs through <i>m</i> machines.	1		
III	Network analysis – basic terms – network construction – time analysis	1 15%		
	Critical path method (CPM)	1		
	Programme evaluation and review technique (PERT)	1		
	Cost considerations in network analysis – crashing	1		
	Introduction to queuing theory-terminologies- classification of queuing models			
	Single server problems	1		
	Multi server problems	1		
IV	Inventory control – variables – deterministic inventory models – purchasing model without shortages		15%	
	Manufacturing model without shortages			
	Purchasing model with shortages	1		
	Manufacturing model with shortages	1		
	SECOND INTERNAL EXAMINATION		·	
	Decision theory – steps in decision theory approach – decision making conditions	1	_	
	Decisions under conditions of risk	1		
\mathbf{V}	Decisions under uncertainty conditions	1	20%	
	Decision tree analysis			
	Game theory – games with saddle points	1	L	
	Games without saddle points $-2 \ge 2$ games	1		

	Graphical method for m x 2 & 2 x n games	1	
VI	Simulation – types of simulation – phases of simulation – applications– advantages and disadvantages	1	
	Design of simulation, models & experiments, model validation	1	
	Generation of random numbers	1	
	Monte Carlo simulation	1	20%
	Queuing simulation model		
	Inventory simulation model		
	Simulation languages	1	

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks =30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3x10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4x10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

14