Course code	Course Name	L-T-P- Credits	Year of Introduction
ME365	Advanced Metal Casting	3-0-0-3	2016
Prerequisite : Nil			

Course Objectives

- To gain theoretical and practical knowledge in material casting processes
- To develops an understanding of the dependent and independent variables which control materials casting in a production processes.
- To impart knowledge on design of gating system for castings
- To know foundry practice of ferrous and non ferrous alloys

Syllabus

Functional requirements of molding materials, gating - type of gating- gating design- factor involved in gating design, risers – primary function of a riser-theoretical consideration-riser design and placement, solidification, heat transfer during solidification, heat flow in solidification, ferrous and non-ferrous foundry practice, steel casting, aluminum and its alloys, magnesium and its alloys, casting design, defects and testing.

Expected outcome:

• The students will have exposed to the different areas of foundry practices, gained idea about metal casting, scope and its applications.

Text Books/References

- 1. A.K.Chakrabarti, Casting Technology and Cast Alloys, Prentice –Hall Of India Ltd, 2005
- 2. Beely, Foundry Technology, Newnes-Butterworths, 1979
- 3. Gruzleski, The Treatment of Liquid Aluminum-Silicon Alloys, the American Foundrymen's Society Inc, USA, 1992
- 4. Heine, Loper and Rosenthal, Principle of Metal Casting, 2nd Edition, Tata Mc-Graw-Hill Publishing Company Limited, New Delhi, 1978
- 5. John Cambell, Casting, Butterworth-Heineman Ltd, Jordon Hill, Oxford, 1991
- 6. T.V.Rama Rao, Metal casting Principles and Practice, New Age International, 2010
- 7. Gruzleski, The Treatment of Liquid Aluminum-Silicon Alloys, the American Foundrymen's Society Inc, USA, 1992.

Course Plan					
Module	Contents	Hours	End Sem. Exam. Marks		
I	Design of molds Functional requirements of molding materials, type of sands Properties of molding sand, sand testing techniques Effect of molding on sand properties,	2	15%		

	Bonding material	1		
	Mould surface coating	1		
	Sand design and control	1		
	Thermal aspect of molding sand, mould wall movement	1		
II	Pouring and feeding Gating - type of gating- gating design	1		
	Factor involved in gating design-illustrative problems in determination of filling time and discharge rate	1	15%	
	Aspiration effect- effects of friction and velocity distribution	M		
	Risers – primary function of a riser Theoretical consideration Riser design and placement Determination of dimensions of rise- blind risers	2		
	Internal risers-use of chills Use of insulators and exothermic compounds	1	-	
	FIRST INTERNAL EXAMINATION			
	Solidification			
	Freezing of pure metal Skin effects- nucleation and growth	1	15%	
	Shrinkage- freezing of alloys	1		
III	Effect of mould materials and alloy composition on casting	1		
111	Fluidity- factor affecting fluidity- fluidity measurement and application of fluidity	1		
	Gases in metals- degassing	1		
	Grain refinement	1		
	Illustrative problems related to determination of solidification time	1		
	Heat transfer during solidification		-	
	Methods of manipulating heat transferExperimental methods for the study of heat transfer during			
	solidification			
	Crystal growth methods	1		
IV	Heat flow in solidification	1	15%	
	Heat transfer with in the solid/liquid metal system	1	4	
	Heat transfer at the metal-mould interface	1	_	
	Heat flow in one dimensional solidification geometries	1		
	Freezing at mould wall	1	4	
	Rapid freezing in contact with a cold substrate with initial melt super cooling	1		
	SECOND INTERNAL EXAMINATION		1	
	Ferrous and non ferrous castings			
V	Steel Casting – The family of cast iron	1		
	Melting of steels and cast irons–Grey iron Foundry practice – ductile iron – Malleable Iron casting	1		

	design		
	Aluminum and its alloys: Different Aluminum alloy systems Advantage and limitation of Aluminum alloy castings	1	
	Molding for aluminum castings - melting of Aluminum- degassing- grain refinement	1	
	Modification- effect of various melt treatment on the mechanical properties of Aluminum castings.	M	
	Magnesium and its alloys: different alloy systems- advantage and limitation of Magnesium alloy castings Molding for magnesium casting- melting of Magnesium- flux and flux less melting	4L	
	Type and functions of fluxes used- degassing and grain refinement- pouring technique	1	
	Copper alloys: advantage of Copper alloys- melting- drossing-oxygen and hydrogen in Copper melting- control of gases- de oxidation	1	
V1	Casting defects and testing		
	Functional design- metallurgical design	1	•
	simplification of foundry practice- economic considerations	1	
	design of junction- specification of castings	1 1	••••
	inspection of castings- analysis of casting defects		20%
	nondestructive testing of casting- dye penetrant testing		
	magnetic flaw detection, radiography, ultrasonic testing, etc.		
	quality control and quality assurance	1	

END SEMESTER EXAM

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts Part A

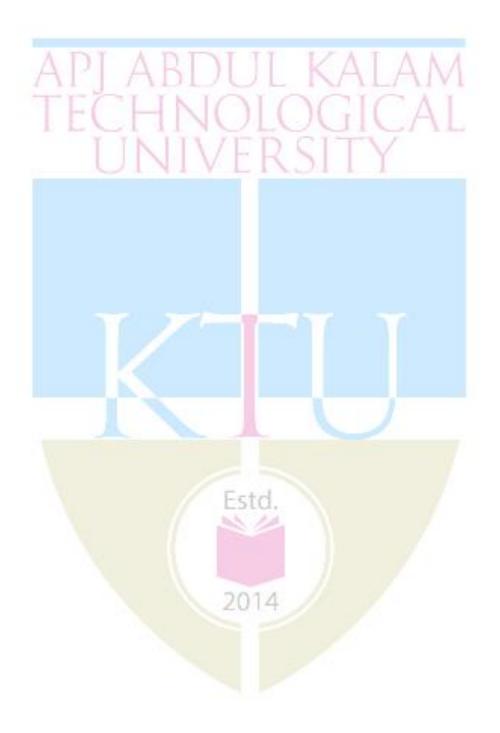
There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) Part B

There should be 2 questions each from module III and IV

Each question carries 10 marks


Students will have to answer any three questions out of 4 (3X10 marks = 30 marks) **Part C**

There should be 3 questions each from module V and VI

Each question carries 10 marks

Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

