Course No	. Course Name	L-T-P-Credits	Year of Introduction				
ME204	THERMAL ENGINEERING	3-1-0-4	2016				
Prerequisite: ME205 Thermodynamics							
Course Ob	ectives:						
1. To a	1. To acquire knowledge on the working of steam turbines, IC engines and gas turbines						
2. To introduce the combustion process in IC engines							
3. Tou	3. To understand air pollution from IC engines and its remedies.						
Syllabus Steam engineering, boilers, steam nozzles, steam turbines, internal combustion engines, performance testing of IC Engines, fuels and fuel combustion, air pollution from IC engines and remedies, combustion in I.C. engines, gas turbines							
Expected o	Itcome: At the end of the course the students	s will be able to	1. A. Berr				
1. Integ	ate the concepts, laws and methodologies fr	om the course in the	ermodynamics				
into a	nalysis of cyclic processes	a thermal employed					
2. 10 ap	es steam turbines compressors	is mermai application					
T (D)							
Text Books			0.02				
I. Rudr	moorthy, Thermal Engineering, McGraw H	III Education India,2	003				
2. R.K.	Lajput, Thermal Engineering, Laxmi publicat	tions,2010					
References	Books:						
1. V.C	anesan, Fundamentals of IC engines, Tata M	cGraw-Hill,2002					
2. I.D	Eastop and A McConkey, Applied thermody	ynamics for engineer	ing technology, Pearson				
3 IBF	evwood I C engine fundamentals McGraw-	Hill 2011					
4. Gill.	P.W., Smith, JR., J.H., and Ziurys, E.J. 1	Fundamentals of int	ernal combustion engines				
Oxfo	d and IBH,1959						
5. Rath	re, Thermal Engineering, McGraw Hill Educ	cation India, 2010					
Steam Tables							
6. R.S.H	hurmi, Steam table with Mollier chart, S. Cha	and,2008					

Course Plan							
Module	Contents	Hours	Sem. Exam Marks				
Ι	Steam engineering- T- S diagram, Mollier chart, Steam cycles- Rankine cycle, Modified Rankine cycle, Relative efficiency, Improvement in steam cycles-Reheat, Regenerative and Binary vapor cycle Steam Boilers: Types of boilers –Cochran boiler, Babcock and Wilcox boiler, Benson boiler, La Mont boiler, Loeffler boiler, Velox boiler, Boiler Mountings and Accessories Steam nozzles:-Types of nozzle- Velocity of steam, mass flow rate, critical pressure ratio and its significance, effect of friction, super saturated flow	8	15%				
II	Steam turbines: classification, compounding of turbines-pressure velocity variation, velocity diagrams, work done, efficiency, condition for maximum efficiency, multistage turbines-condition line, stage efficiency. Steam turbine performance-reheat factor, degree of reaction, cycles with reheating and regenerative heating, governing of turbines	8	15%				
FIRST INTERNAL EXAM							
III	Internal combustion engines: classification of I.C. Engines- four stroke and two stroke I.C. Engines, Comparison of four stroke and two stroke Engine. Wankel Engine, Air standard cycle-Carnot cycle, Otto cycle; Diesel cycle, dual combustion cycle, comparison of Otto, diesel and dual combustion cycles. Stirling and Ericsson cycles, air standard efficiency, specific work output, work ratio, Actual cycle analysis, deviation of actual engine cycle from ideal cycle. Rotary engines, Stratified charge engine, super charging of SI and CI Engines – turbo charging. Variable specific heats.	10	15%				
IV	Performance Testing of I C Engines: Indicator diagram, mean effective pressure. Torque, Engine power- BHP, IHP. Engine efficiency- mechanical efficiency, volumetric efficiency, thermal efficiency and relative efficiency, Specific fuel consumption. Testing of I C engines- Morse test, Heat balance test and Retardation test Fuels and fuel combustion: flash point and fire point, calorific value, Fuels for SI and CI engine, Important qualities of SI and CI engine fuels, Rating of SI engine and CI engine fuels, Dopes, Additives, Gaseous fuels, LPG, CNG, Biogas, Producer gas. Analysis of fuel combustion-A/F ratio, equivalence ratio, minimum quantity of air, flue gas analysis, excess air.	10	15%				
	SECOND INTERNAL EXAM						
V	Air pollution from I.C. Engine and its remedies: Pollutants from S.I. and C.I. Engines, Methods of emission control, alternative fuels for I.C. Engines; the blending of fuels, Bio fuels. Combustion in I.C. Engines: Combustion phenomena in S.I. engines; Ignition limits, stages of combustion in S.I. Engines, Ignition lag, velocity of flame propagation, auto ignition, detonation; effects of engine variables on detonation; theories of detonation, octane rating of fuels;	10	20%				

	pre-ignition; S.I. engine combustion chambers. Stages of combustion in C.I. Engines; delay period; variables affecting delay period; knock in C.I. engines, Cetane rating; C.I. engine combustion chambers.				
VI	Gas turbines: classification, Thermodynamic analysis of gas turbine cycles-open, closed and semi closed cycle; ideal working cycle- Brayton cycle-P-v and T-s diagram, thermal efficiency. Effect of compressor and turbine efficiencies. Optimum pressure ratio for maximum specific work output with and without considering machine efficiencies. Comparison of gas turbine and IC engines, Analysis of open cycle gas turbine, Improvements of the basic gas turbine cycles-regeneration, intercooling and reheating-cycle efficiency and work output-Condition for minimum compressor work and maximum turbine work. Combustion chambers for gas turbines. pressure loss in combustion process and stability loop.	10	20%		
END SEMESTER EXAM					

Question Paper Pattern

Total marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

2014