Cours code	e Course Name	L-T-P- Credits	Year of Introduction
ME3	63 COMPOSITE MATERIALS AND MECHANICS	3-0-0-3	2016
Prerequ	isite : Nil	AN	4
	Objectives:	1 VIV	1
	o understand various matrices and reinforcements used in composite		actuix
	o know about polymer matrix composites, metal matrix composites omposites and its manufacturing and applications	s, ceranne i	llaultx
	o introduce post processing operations and micromechanics of comp	posites	
Syllabı			
•	tes – Reinforcements – Matrices – Polymer matrix composite –	Metal mat	rix composite -
Ceramic	matrix composite - Post processing operations - Micromechanic	s of compos	ites
-	ed outcome:		
	The students will be able to gain knowledge about composites, reinf	orcements,	matrices, post
Text B			
	K. K. Chawla, Composite Materials : Science and Engineering, Sprin	-	
	eddy J N (Ed.), Mechanics of Composite Materials; Selected Works	s of Nichola	s J. Pagano,
	pringer, 1994		
	obert M. Jones, Mechanics of Composite Materials, CRC Press, 1998		
	nces Books:		
	L.Matthews & R.D.Rawlings, Composite Materials, Engineering a all, London, 1994	nd Sciences	, Chapman &
2. H	land Book of Composites, George Lubin. Van Nostrand, Reinhold C	Co. 1982	
	licael hyer, Stress Analysis of Fiber - Reinforced Composite Materi	als , Tata M	cGraw Hill,
	998.	N. 1. 1000	
	.K.Mallicak, Fiber-reinforced composites, Monal Deklar Inc., New onald Gibson, Principles of Composite Material Mechanics, TMH,		•
Э. Г		1994.	
	Course Plan		
		/	End
Modu le	Contents	Hou	rs Sem. Exam.
ю	2014		Marks
	Composite : Introduction, definition, characteristics, functions	1	
	classification of composites based on structure and matrix	1	
Ι	smart composites, advantages and limitations	1	15%
	history, industrial scene and applications	1	
	Interfaces: wettability and bonding interface in composites	1	

	types of bonding at interface.	1	
II	Fibers : Introduction, types of fibers, natural fibers	1	15%
	glass fiber fabrication, structure, properties and applications	2	
	boron fiber fabrication, structure, properties and applications	K1.4	
	carbon fiber, Ex-Pan carbon fiber	111	
	Ex cellulose carbon fiber, Ex-Pitch carbon	<u> 1</u>	
	carbon fiber structure, properties and applications	1	
	aramid fiber fabrication, structure, properties and applications	1	
	whiskers: characteristics, properties and applications.	1	
	FIRST INTERNAL EXAMINATION		
	Polymer matrix composites (PMC) : thermoset, thermoplastic and elastomeric polymers	1	
	properties, characteristics and applications as matrix materials	1	
III	processing of polymer matrix composites: hand methods, Lay up method, spray up method	2	15%
	moulding methods, pressure bagging and bag moulding methods,	1	
	pultrusion and filament winding process.	1	
IV	Metal matrix composites (MMC) : classification of metals, intermetallics, alloys and their potential role as matrices in composites	1	15%
	properties, characteristics and applications of metals as matrix materials	1	
	production techniques: powder metallurgy, diffusion bonding, melt stirring	2	
	squeeze casting, liquid infiltration under pressure, spray code position, insitu process.	2	
	SECOND INTERNAL EXAMINATION		
V	Ceramic matrix composites (CMC) : classification of ceramics and their potential role as matrices,	1	20%
	properties, characteristics and applications of ceramics as matrix materials	1	
	conventional techniques : cold pressing and sintering, hot pressing, reaction bonding,	1	
	hot pressing and reaction bonding new techniques : liquid infiltration, pultrusion,	1	
	lanxide process, insitu chemical technique, sol-gel technique	2	

V1	Post processing operations : machining, cutting, polishing,	1	
	welding, rivetting and painting	1	
	Advanced post processing methods : ultrasonic welding, plasma coating,	1	
	Water jet cutting and laser machining	1	20%
	Micromechanics of composites: maximum stress and strain criterion (derivations)	2	
	Tsai-Hill and Tsai-Wu failure criterion (derivations)	2	
	mechanics of load transfer from matrix to fiber (description)	1	
	END SEMESTER EXAMINATION		

Question Paper Pattern

Estd.

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.