Course code	Course Name	L-T-P- Credits	Y Intr	ear of oduction		
ME362	Control System Engineering	3-0-0-3		2016		
 Course Objectives: : 1. To introduce the concepts of controls and modelling of physical systems. 2. To give idea on system response analysis and stability of systems. 3. To use different methods to analyse stability of control systems 						
Syllabus: Control systems and components, Mathematical models, Block diagrams, Signal Flow graphs, Transient and Steady state response analysis, Stability , Routh's stability criterion, Root locus method. Frequency response analysis using polar plots ,Bode plots, Nyquist stability criterion Expected Outcomes: At the end of the course students will be able 1. To model and analyse physical systems. 2. To analyse the stability of feedback control systems						
 Text books: Kuo, B. C., Automatic Control Systems, Prentice Hall,2012 Thaler and Brown, Analysis and Design of Feedback Control Systems, McGraw Hill, 1960. Nagrath I J and Gopal M, Control Systems Engineering, New Age India Pvt Limited, 2009 References: Ogata, K., Modern Control Engineering, Pearson Education, 2004 						
2. NPTEL courses, http://nptel.iitm.ac.in/courses.pnp, web and video courses on Control Engineering						
Module	Contents	H	lours	End Sem. Exam. Marks		
Ι	Introduction to control systems. Elementary ideas on control systems- Open loop and closed loop systems systems, Automatic regulating systems, Process control Adaptive control systems, Learning control systems, control systems, Multivariable control systems, Linear a linear systems. Elementary ideas on types of proportional, integral, proportional integral, proportional derivative controls. Direct and indirect controls. Math models of physical systems – typical examples of me thermal, electrical, hydraulic and pneumatic systems.	types of , Servo systems, Discrete and Non- controls- l integral mematical chanical,	7	15%		
п	Block diagram, transfer function, reduction of block d signal flow graphs :Manson's gain formula. Control components – servomotors, stepper motor, synchros, h pumps and motors, hydraulic valves, pneumatic pneumatic valve, pneumatic relay, pneumatic gyroscopes (elementary ideas only. No derivations)	liagrams, l system nydraulic bellows, actuator,	7	15%		

	FIRST INTERNAL EXAMINATION			
III	System response- Time response of first and second order systems, steady state errors and error constants, specifications in time domain. Effect of pole locations, Concept of stability, Routh's stability criterion	7	15%	
IV	Root locus method of analysis and design. Lead and lag compensation	7	15%	
SECOND INTERNAL EXAMINATION				
V	Frequency response analysis- relationship between time & frequency response, Bode's plot, stability in frequency domain, gain margin and Phase margin	7	20%	
V1	Polar plots, Nyquist stability criterion, Stability analysis, Relative stability concepts, Gain margin and phase margin.	7	20%	
END SEMESTER EXAMINATION				

Question Paper Pattern

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

Time: 3 hrs