Cours code	e Course Name L-T- Cred			r of luction		
ME32	2 HEAT TRANSFER 2-1-(-3	20	16		
Prerequ	isite : Nil					
Course	Objectives					
	To introduce the concepts of heat transfer to enable the students to ubjected to thermal loading.	desi	gn com	ponents		
Conduct exchang	nensional steady state heat conduction - Extended Surfaces- ion - Free convection- Forced convection – Radiation he ers – condensers - evaporators – boiling heat transfer – heat tra ion chamber – ablative heat transfer – aerodynamic heating –	at tr 1sfer	ansfer in gas	 Heat turbine 		
Expecte	d Outcome					
The students will						
• 1	Get idea about basic modes of Heat transfer. Be able to solve practical heat transfer problems. Be able to analyse heat exchangers.					
2. Y	S.C. Sachdeva, "Fundamentals of Engineering Heat & Mass Trans Ltd., New Delhi,1981. Yunus A. Cengel, Heat Transfer – A Practical Approach, Tata Ma 2003.					
	ook (Approved for use in the examination)					
	C P Kothandaraman and S Subramanyan, Heat and Mass Transfer I nternational, 2014	Datab	book, N	ew Age		
Referen	ces: Estd.	/				
2. J 3. J 4. J 5. H	C.Y.Chow, "Introduction to Computational Fluid Dynamics", John P. Holman, "Heat Transfer", McGraw-Hill Book Co., Inc., New Y ohn D. Anderson, JR" Computational Fluid Dynamics", McGraw- New York, 1995. ohn H. Lienhard, "A Heat Transfer Text Book", Prentice Hall Inc., P. S. Ghoshdasidar, "Computer simulation of low and Heat tran Book Co, Inc, NewDelhi, 1998. C.J. Chung, Computational Fluid Dynamics, Cambridge University	ork, Hill 1 1981 sfer'	6e, 199 Book C 1. ' McGr	1. o., Inc.,		
	Course Plan		, 2002			
Module	Contents		Hours	End Sem. Exam Marks		
Ι	Basic Modes of Heat Transfer – One dimensional steady state h conduction: Composite Medium – Critical thickness.	eat	2	15%		

	Effect of variation of thermal Conductivity – Extended Surfaces –	2			
	Unsteady state.				
	Heat Conduction: Lumped System Analysis, Heat Transfer in Semi- infinite and infinite solids,	3			
	Use of Transient, Temperature charts	2			
II	Introduction, Free convection in atmosphere free convection on a vertical flat plate – Empirical relation in free convection.	2	15%		
	Forced convection.	2			
	Laminar and turbulent convective heat transfer analysis in flows between parallel plates, over a flat plate and in a circular pipe.	2			
	Empirical relations, application of numerical techniques in problem solving.	3			
FIRST INTERNAL EXAM					
	Introduction to Physical mechanism of radiation heat transfer	1	- 15%		
III	Radiation properties – Radiation shape factors.	2			
	Heat exchange between non – black bodies.	2			
	Radiation shields.	1			
	Heat exchangers-Classification.	1	- 15%		
IV	Temperature Distribution – Overall heat transfer coefficient.	2			
IV	Heat Exchange Analysis – LMTD Method. Heat Exchange Analysis –E-NTU Method.	3			
SECOND INTERNAL EXAM					
	Special heat exchangers-condensers.	1	20%		
V	Special heat exchangers- evaporators.	1			
	Condensation heat transfer.	1			
	Boiling heat transfer phenomenon, boiling co- relations.	2			
	Heat transfer in gas turbine combustion chamber (descriptive only)	2	20%		
VI	Ablative heat transfer.	1			
	Aerodynamic heating-Moving boundary problems.	1			
	Numerical treatment.	2			
END SEMESTER EXAM					

Question Paper Pattern

Exam duration: 3 hours

Maximum marks: 100 The question paper shall consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks =30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.