Course No.	Course Name	L-T-P-Credits	Year of Introduction				
ME203	MECHANICS OF FLUIDS	3-1-0-4	2016				
Prerequisite: nil							
Course Objectives:							
1. To study	the mechanics of fluid motion.						
2. To estal	2. To establish fundamental knowledge of basic fluid mechanics and address specific topics						
relevant	relevant to simple applications involving fluids						
3. To famil	liarize students with the relevance of fluid	dynamics to many e	ngineering systems				
Syllabus	AL ADUUL	NALA	AIV1				
Fluid Propertie	es, Kinematics of fluid flow, Fluid Statics,	Dynamics of fluid	flow, Flow through pipes,				
Concept of Boundary Layer, Dimensional Analysis and Hydraulic similitude							
Expected outo	come: At the end of the course students wi	ll be able to					
1. Calculat	e pressure variations in accelerating fluids	using Euler's and B	ernoulli's equations				
2. Become	2. Become conversant with the concepts of flow measurements and flow through pipes						
3. Apply th	the momentum and energy equations to flui	d flow problems.					
4. Evaluate	e nead loss in pipes and conduits.	norical avnorimenta	and to				
3. Ose unit	mamic similarity	nerical experiments					
Text Books:	name sinnanty						
1 Balachar	ndran P. Engineering Fluid Mechanics, PF	U 2012					
2. A S Sale	eem, Fluid Mechanics, Fathima Books, 201	6					
References Bo	ooks:						
1. Cengel,	Fluid Mechanics, McGraw Hill Education	on India 2014					
2. Bansal R	R. K., A Textbook of Fluid Mechanics and	Hydraulic Machines	, Laxmi Publications,				
2005							
3. Modi P.	N. and S. M. Seth, Hydraulics & Fluid Mo	echanics, S.B.H Pub	lishers, New Delhi, 2002				
1 Stugator	VIED Write and K W Dedfard El	id Machanica Tata	McCrow IIII Dalhi				
4. Streeter	V. L., E. B. wylle and K. w. Bedlord, Fit	ind Mechanics, Tata	McGraw Hill, Deini,				
5 Joseph k	Karz Introductory Fluid Mechanics Can	hridge University n	ress 2010				
6. Fox R. V	W. and A. T. McDonald, Introduction to F	uid dynamics, 5/e, J	ohn Wiley and Sons.				
2009.	Lucia in the						
7. Shames	I. H, Mechanics of Fluids, McGraw Hill, 1	992.					
8. White F	.M., Fluid Mechanics, 6/e, Tata McGraw I	Hill, 2008					
2014							

Course Plan					
Module	Contents	Hours	Sem. Exam Marks		
I	Introduction: Fluids and continuum, Physical properties of fluids, density, specific weight, vapour pressure, Newton's law of viscosity. Ideal and real fluids, Newtonian and non-Newtonian fluids. Fluid Statics- Pressure-density-height relationship, manometers, pressure on plane and curved surfaces, center of pressure, buoyancy, stability of immersed and floating bodies, fluid masses subjected to uniform accelerations, measurement of pressure.	8	15%		
Π	Kinematics of fluid flow: Eulerian and Lagrangian approaches, classification of fluid flow, 1-D, 2-D and 3-D flow, steady, unsteady, uniform, non-uniform, laminar, turbulent, rotational, irrotational flows, stream lines, path lines, streak lines, stream tubes, velocity and acceleration in fluid, circulation and vorticity, stream function and potential function, Laplace equation, equipotential lines flow nets, uses and limitations,	8	15%		
	FIRST INTERNAL EXAM				
ш	Dynamics of Fluid flow: Fluid Dynamics: Energies in flowing fluid, head, pressure, dynamic, static and total head, Control volume analysis of mass, momentum and energy, Equations of fluid dynamics: Differential equations of mass, energy and momentum (Euler's equation), Navier-Stokes equations (without proof) in rectangular and cylindrical co-ordinates, Bernoulli's equation and its applications: Venturi and Orifice meters, Notches and Weirs (description only for notches and weirs). Hydraulic coefficients, Velocity measurements: Pitot tube and Pitot-static tube.	10	15%		
IV	Pipe Flow: Viscous flow: Reynolds experiment to classify laminar and turbulent flows, significance of Reynolds number, critical Reynolds number, shear stress and velocity distribution in a pipe, law of fluid friction, head loss due to friction, Hagen Poiseuille equation. Turbulent flow: Darcy- Weisbach equation, Chezy's equation Moody's chart, Major and minor energy losses, hydraulic gradient and total energy line, flow through long pipes, pipes in series, pipes in parallel, equivalent pipe, siphon, transmission of power through pipes, efficiency of transmission, Water hammer, Cavitation.	12	15%		
SECOND INTERNAL EXAM					
V	Concept of Boundary Layer : Growth of boundary layer over a flat plate and definition of boundary layer thickness, displacement thickness, momentum thickness and energy thickness, laminar and turbulent boundary layers, laminar sub layer, velocity profile, Von- Karman momentum integral equations for the boundary layers, calculation of drag, separation of boundary and methods of control.	10	20%		

VI	Dimensional Analysis and Hydraulic similitude: Dimensional analysis, Buckingham's theorem, important dimensional numbers and their significance, geometric, Kinematic and dynamic similarity, model studies. Froude, Reynold, Weber, Cauchy and Mach laws- Applications and limitations of model testing, simple problems only	8	20%
----	--	---	-----

END SEMESTER EXAM

Question Paper Pattern Total marks: 100, Time: 3 hrs The question paper should consist of three parts

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

Part A

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks = 40 marks)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

