Cours	e Course Name	L-T-P –	Yea	r of		
code		Credits	Introd	uction		
ME30	7 MACHINE DESIGN - I	3-1-0-4	20.	16		
Prerequisite : Nil						
Course Objectives						
•]	o understand the basic components and layout of linka	ages in the	assembly	v of a		
5	ystem/machine.		-			
Syllabu		T A.A.	·	1		
Introduction to design of riveted, threaded, and welded joints – springs and design –Design laws						
- stresses in components and machines.						
Expected outcome.						
• The students will become aware of the machine components, forces, stresses affecting						
Text De ches						
1 B. J. Norton, Kinemetics and Dynamics of Machinery, 1st ad. Tata McGray, Hill						
Fducation Private Limited Delbi 2004						
2 5	2 S. S. Rattan Theory of Machines 3rd ed. Tata McGraw Hill Education Private Limited					
2. 5.5 Rattan Theory of Machines, 51d ed., Tata Meoraw Thi Education Trivate Ennited, Delhi 2009						
Refere	nces:					
1. J	. E. Shigley, J. J. Uicker, Theory of Machines and Mech	hanisms, Ox	ford Uni	versity		
Press, 2016						
2. A. Ghosh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated East West						
Press, 3e, 2006						
3. (C. E. Wilson, P. Sadler, Kinematics and Dynamics of Mac	hinery, 3rd e	dition, F	Pearson		
I	Education, 2003					
4. I	Holowenko, Dynamics of Machinery, John Wiley & Sons, 1	995				
	Course Plan					
			Ē.	End		
Madala	Contents		Hanna	Sem.		
Module	Contents		Hours	Exam		
	Estd			Marks		
	Classification of mechanisms – Basic kinematic co	oncepts and				
	definitions - Degree of freedom, Mobility - Kutzbac	ch criterion,				
	Gruebler's criterion – Grashof's Law –Kinematic inversi	ons of four-		15%		
Ι	bar chain, slider crank chains and double slider crank ch	ains – Limit	10			
	positions – Mechanical advantage – Iransmission Ang	coupler				
	curves – Description of some common Mechanisms – C	Quick return				
		<u> </u>				
	Displacement, velocity and acceleration analysis	or simple				
п	Force analysis of machinery static and dynamic force	on polygons	10	150/		
11	plane motion mechanisms graphical method	rinciple of	10	13%		
	superposition – matrix methods - method of virtual work	of the pice of				
FIRST INTERNAL FXAMINATION						
	Governors: - terminology and classification · Watt D	orter Proel				
тт	Hartnell Hartung quality of governors inertia governor	r_{s-} governor	8	15%		
	speed control	50,01101	0	1.5 /0		
	Gyroscope: - Principle-Angular acceleration-Effect of	gyroscopic				

	couple airplanes, and ships, stability of automobile and two wheel vehicles, Rigid disc at an angle fixed to a rotating shaft				
IV	Turning moment diagram and Flywheel: - coefficient of fluctuation of energy and speed- energy saved in a flywheel- force analysis, piston effort-crankpin effort- crank effort-turning moment diagrams for I.C. engines.	8	15%		
SECOND INTERNAL EXAMINATION					
V	Cams and Followers: - types-follower motion-SHM-uniform velocity and acceleration- Cycloidal - displacement, velocity and acceleration curves-Cam profile-Reciprocating and oscillating followers-Tangent cams-Convex and concave cams with footed followers. Introduction to Polynomial cams. (Numerical problems)	10	20%		
VI	Law of toothed gearing – Involutes and cycloidal tooth profiles –Spur Gear terminology and definitions –Gear tooth action – contact ratio – Interference and undercutting Gear trains – Speed ratio, train value – Parallel axis gear trains– Epicyclic Gear Trains (Numerical problems)	10	20%		
END SEMESTER EXAM					

QUESTION PAPER PATTERN

Maximum Marks :100

Exam Duration: 3 Hours

PART A

4 Questions uniformly covering modules 1 and 2. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

PART B

4 Questions uniformly covering modules 3 and 4. Each question carries 10 marks. Students will have to answer any three questions out of four. (3X10=30 marks)

Estd.

PART C

6 Questions uniformly covering modules 5 and 6. Each question carries 10 marks. Students will have to answer any four questions out of six. (4X10=40 marks)

Note: Each question can have maximum of 4 sub questions (a, b, c, d)