Course code	Course Name	L-T-P- Credits	Year of Introduction
ME306	ADVANCED MANUFACTURING TECHNOLOGY	3-0-0-3	2016
Pre requisite	e: ME 220 Manufacturing Technology, ME303 Manufacturing	Machine Tool	s and Digital
Course Obje	ectives	ALA	IVI
compone 2. To give 1 advanced 3. To descri 4. To demon	duce machining principles and processes in nts and products that use conventional and nonco- basic understanding of the machining capabilities manufacturing processes. be how PLC's operate and how they control auto- nstrate tool path simulations with CNC powered en- uce CNC programming	nventional tech , limitations, an mated equipme	nologies. d productivity of
Syllabus:-			
Powder Me	tallurgy- Programmable Logic Controllers- Cocess - high velocity forming of metals-material		
Expected ou	tcome:		
The students	will be able to		
effect mach ii. Appro hard r iii. Prescr mater iv. Progr	me conversant with the non- traditional machin of process parameters on the surface integrity ining process. eciate the use of an EDM as a non traditional re- naterials. ribe a laser materials processing technique su ial, size, precision, and surface quality requireme am and operate a CNC mill and lathe.	aspects during nethod of mach uitable for a g nts.	the non- traditional
Text books/l	References		
 Davies publishin Ibrahim Education Jain V.K M.P. Gr Prentice Petruzel 	, High velocity forming of metals, PHI, 1968. K and Austin E.R, Developments in high spe ng Co, 1970. Zeid, R Sivasubrahmanian CAD/CAM: Th on, 2009 G, Introduction to Micromachining, Narosa publis oover, E.M. Zimmers, Jr. CAD/CAM; Computer Hall of India, 1987 la Frank.D., Programmable logic controllers,McC Koren, Computer control of manufacturing system	eory & Pract shers,2014 Aided Design Graw Hill,2016	ice, McGraw Hill

	Course Plan		
Module	Contents	Hours	End Sem. Exam. Marks
Ι	Introduction: Need and comparison between traditional, non- traditional and micro & nano machining process.	1	15%
	Powder Metallurgy: Need of P/M - Powder Production methods:- Atomization, electrolysis, Reduction of oxides, Carbonyls (Process parameters, characteristics of powder produced in each method).	1	
	Powder characteristics: properties of fine powder, size, size distribution, shape, compressibility, purity etc.	1	
	Mixing – Compaction:- techniques, pressure distribution, HIP & CIP.	1	
	Mechanism of sintering, driving force for pore shirking, solid and liquid phase sintering - Impregnation and Infiltration Advantages, disadvantages and specific applications of P/M.	1	
	Programmable Logic Controllers (PLC): need – relays - logic ladder program –timers, simple problems only.	1	
	Point to point, straight cut and contouring positioning - incremental and absolute systems – open loop and closed loop systems - control loops in contouring systems: principle of operation.	1	
Π	DDA integrator:-Principle of operation, exponential deceleration –liner, circular and complete interpolator.	1	15%
	NC part programming: part programming fundamentals - manual programming –	1	
	NC coordinate systems and axes — sequence number, preparatory functions, dimension words, speed word, feed world, tool world, miscellaneous functions –	1	
	Computer aided part programming:- CNC languages - APT language structure: geometry commands, motion	1	
	commands, postprocessor commands, compilation control commands	1	
	Programming exercises: simple problems on turning and drilling etc - machining centers- 5 axis machining (At least one programming exercise must be included in the end semester University examination).	2	
	FIRST INTERNAL EXAMINATION		

III	Electric Discharge Machining (EDM):- Mechanism of metal removal, dielectric fluid, spark generation, recast layer and attributes of process characteristics on MRR, accuracy, HAZ etc, Wire EDM, applications and accessories.	3	15%
	Ultrasonic Machining (USM):-mechanics of cutting, effects of parameters on amplitude, frequency of vibration, grain diameter, slurry, tool material attributes and hardness of work material, applications.	2	
	Electro chemical machining (ECM):- Mechanism of metal removal attributes of process characteristics on MRR, accuracy, surface roughness etc, application and limitations.	1	
IV	Laser Beam Machining (LBM), Electron Beam Machining (EBM), Plasma arc Machining (PAM), Ion beam Machining(IBM) - Mechanism of metal removal, attributes of process characteristics on MRR, accuracy etc and structure of HAZ compared with conventional process; application, comparative study of advantages and limitations of each process.	3	15%
	Abrasive Jet Machining (AJM), Abrasive Water Jet Machining (AWJM) - Working principle, Mechanism of metal removal, Influence of process parameters, Applications, Advantages & disadvantages.	3	
	SECOND INTERNAL EXAMINATION		
	High velocity forming of metals:-effects of high speeds on the stress strain relationship steel, aluminum, Copper – comparison of	2	
	conventional and high velocity forming methods- deformation velocity, material behavior, stain distribution.	3	
v	velocity, material behavior, stain distribution. Stress waves and deformation in solids – types of elastic body waves- relation at free boundaries- relative particle velocity.	2	20%
v	 velocity, material behavior, stain distribution. Stress waves and deformation in solids – types of elastic body waves- relation at free boundaries- relative particle velocity. Sheet metal forming: - explosive forming:-process variable, properties of explosively formed parts, etc. 		20%
v	 velocity, material behavior, stain distribution. Stress waves and deformation in solids – types of elastic body waves- relation at free boundaries- relative particle velocity. Sheet metal forming: - explosive forming:-process variable, properties of explosively formed parts, etc. Electro hydraulic forming: - theory, process variables, etc, comparison with explosive forming. 	2	20%
v	 velocity, material behavior, stain distribution. Stress waves and deformation in solids – types of elastic body waves- relation at free boundaries- relative particle velocity. Sheet metal forming: - explosive forming:-process variable, properties of explosively formed parts, etc. Electro hydraulic forming: - theory, process variables, etc, comparison with explosive forming. Micromachining: Diamond turn mechanism, material removal mechanism, applications. 	2	20%
V	 velocity, material behavior, stain distribution. Stress waves and deformation in solids – types of elastic body waves- relation at free boundaries- relative particle velocity. Sheet metal forming: - explosive forming:-process variable, properties of explosively formed parts, etc. Electro hydraulic forming: - theory, process variables, etc, comparison with explosive forming. Micromachining: Diamond turn mechanism, material removal mechanism, applications. Advanced finishing processes: - Abrasive Flow Machining, Magnetic Abrasive Finishing. 	2 2 1	20%
V V1	 velocity, material behavior, stain distribution. Stress waves and deformation in solids – types of elastic body waves- relation at free boundaries- relative particle velocity. Sheet metal forming: - explosive forming:-process variable, properties of explosively formed parts, etc. Electro hydraulic forming: - theory, process variables, etc, comparison with explosive forming. Micromachining: Diamond turn mechanism, material removal mechanism, applications. Advanced finishing processes: - Abrasive Flow Machining, 	2 2 1 1	20%

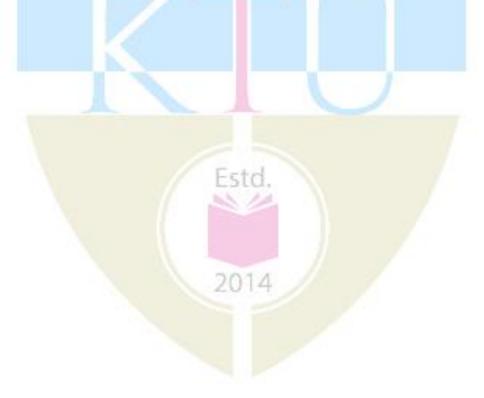
Question Paper Pattern

Maximum marks: 100

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)


Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

