Course code	Course Name	L-T-P- Credits	Year of Introduction
ME304	DYNAMICS OF MACHINERY	$\mathbf{2 - 1 - 0 - 3}$	$\mathbf{2 0 1 6}$

Prerequisite: ME301 Mechanics of Machinery

Course Objectives:

- To impart knowledge on force analysis of machinery, balancing of rotating and reciprocating masses, Gyroscopes, Energy fluctuation in Machines.
- To introduce the fundamentals in vibration, vibration analysis of single degree of freedom systems.
- To understand the physical significance and design of vibration systems with desired conditions

Syllabus

Force analysis of machinery - static and dynamic force analysis of plane motion mechanisms. Flywheel analysis - static and dynamic balancing - balancing of rotating masses, gyroscopic couples. Vibrations - free vibrations of single degree freedom systems, damping, forced vibration, torsional vibration.

Expected outcome:

The students will be able to

1. Develop the design and practical problem solving skills in the area of mechanisms
2. Understand the basics of vibration and apply the concepts in design problems of mechanisms.

Text Books:

1. Ballaney P.L. Theory of Machines, Khanna Publishers, 1994
2. S. S. Rattan, Theory of Machines, Tata McGraw Hill, 2009
3. V. P. Singh, Theory of Machines, Dhanpat Rai,2013

References :

1. E. Wilson, P. Sadler, Kinematics and Dynamics of Machinery, Pearson Education, 2003
2. Ghosh, A. K. Malik, Theory of Mechanisms and Machines, Affiliated East West Press, 2003
3. H. Myskza, Machines and Mechanisms Applied Kinematic Analysis, Pearson Education, 4e, 2012
4. Holowenko, Dynamics of Machinery, John Wiley, 1995
5. J. E. Shigley, J. J. Uicker, Theory of Machines and Mechanisms, McGraw Hill, 1995
6. W.T.Thompson, Theory of vibration, Prentice Hall, 1997

Course Plan			
Module	Contents	Hours	End Sem. Exam Marks
I	Introduction to force analysis in mechanisms - static force analysis (four bar linkages only) - graphical methods Matrix methods - method of virtual work - analysis with sliding and pin friction	4 3	15\%
II	Dynamic force analysis: Inertia force and inertia torque. D'Alemberts principle, analysis of mechanisms (four bar linkages only), equivalent dynamical systems Force Analysis of spur- helical - bevel and worm gearing	4 3	15\%
FIRST INTERNAL EXAM			
III	Flywheel analysis - balancing - static and dynamic balancing balancing of masses rotating in several planes Balancing of reciprocating masses - balancing of multi-cylinder in line engines - V engines - balancing of machines	4 3	15\%
IV	Gyroscope - gyroscopic couples Gyroscopic action on vehicles-two wheelers, four wheelers, air planes and ships. Stability of an automobile - stability of a two wheel vehicle -Stabilization of ship.	3 4	15\%
SECOND INTERNAL EXAM			
V	Introduction to vibrations - free vibrations of single degree freedom systems - energy Method	2	20\%
	Undamped and damped free vibrations - viscous damping - critical damping - logarithmic decrement - Coulomb damping - harmonically excited vibrations	3	
	Response of an undamped and damped system - beat phenomenon transmissibility	2	
VI	Whirling of shafts - critical speed - free torsional vibrations - self excitation and stability analysis - vibration control - vibration isolation - vibration absorbers	4	20\%
	Introduction to multi-degree freedom systems - vibration measurement - accelerometer - seismometer - vibration exciters	3	
END SEMESTER EXAM			

Maximum marks: 100
Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II
Each question carries 10 marks
Students will have to answer any three questions out of 4 (3 X 10 marks $=30$ marks)

Part B

There should be 2 questions each from module III and IV
Each question carries 10 marks
Students will have to answer any three questions out of 4 (3 X10 marks $=30$ marks)

Part C

There should be 3 questions each from module V and VI
Each question carries 10 marks
Students will have to answer any four questions out of 6 (4 X 10 marks $=40$ marks)
Note: Each question can have a maximum of four sub questions, if needed.

