Course code	Course Name	L-T-P- Credits	Year of Introduction		
ME304	DYNAMICS OF MACHINERY	2-1-0-3	2016		
Prerequisite: N	E301 Mechanics of Machinery	A &	4		
 Course Objectives: To impart knowledge on force analysis of machinery, balancing of rotating and reciprocating masses, Gyroscopes, Energy fluctuation in Machines. To introduce the fundamentals in vibration, vibration analysis of single degree of freedom systems. To understand the physical significance and design of vibration systems with desired conditions 					
Syllabus Force analysis Flywheel analy Vibrations – fr vibration.	of machinery - static and dynamic force analysis of resis - static and dynamic balancing - balancing of rotating ree vibrations of single degree freedom systems, damping	plane motion masses, gyr g, forced vib	on mechanisms. oscopic couples. oration, torsional		
 Expected outcome: The students will be able to 1. Develop the design and practical problem solving skills in the area of mechanisms 2. Understand the basics of vibration and apply the concepts in design problems of mechanisms. 					
Text Books: 1. Ba 2. S. 3. V.	laney P.L. Theory of Machines, Khanna Publishers,1994 S. Rattan, Theory of Machines, Tata McGraw Hill, 2009 P. Singh, Theory of Machines, Dhanpat Rai,2013)			
References :			1.1		
 E. Gh 200 H. 4e, Ho J. H W. 	 Wilson, P. Sadler, Kinematics and Dynamics of Machinery, osh, A. K. Malik, Theory of Mechanisms and Machines, Af 03 Myskza, Machines and Mechanisms Applied Kinematic An 2012 Iowenko, Dynamics of Machinery, John Wiley, 1995 Shigley, J. J. Uicker, Theory of Machines and Mechanism T.Thompson, Theory of vibration, Prentice Hall, 1997 	Pearson Ed filiated East alysis, Pears ns, McGraw	ucation, 2003 West Press, son Education, Hill,1995		

Course Plan				
Module	Contents		End Sem. Exam	
	API ABDUL KALA	M	Marks	
I	Introduction to force analysis in mechanisms - static force analysis (four bar linkages only) - graphical methods		15%	
	Matrix methods - method of virtual work - analysis with sliding and pin friction			
II	Dynamic force analysis: Inertia force and inertia torque. D'Alemberts principle, analysis of mechanisms (four bar linkages only), equivalent dynamical systems	4	15%	
	Force Analysis of spur- helical - bevel and worm gearing	3		
FIRST INTERNAL EXAM				
III	Flywheel analysis - balancing - static and dynamic balancing - balancing of masses rotating in several planes	4		
	Balancing of reciprocating masses - balancing of multi-cylinder in line engines - V engines - balancing of machines	3	13%	
IV	Gyroscope – gyroscopic couples	gyroscopic couples 3 action on vehicles-two wheelers, four wheelers, air planes ability of an automobile – stability of a two wheel vehicle a of ship. 4		
	Gyroscopic action on vehicles-two wheelers, four wheelers, air planes and ships. Stability of an automobile – stability of a two wheel vehicle –Stabilization of ship.			
SECOND INTERNAL EXAM				
V	Introduction to vibrations – free vibrations of single degree freedom systems – energy Method	2		
	Undamped and damped free vibrations – viscous damping – critical damping - logarithmic decrement - Coulomb damping – harmonically excited vibrations Response of an undamped and damped system – beat phenomenon - transmissibility		20%	
				VI
Introduction to multi-degree freedom systems - vibration measurement - accelerometer - seismometer - vibration exciters				
END SEMESTER EXAM				

Question Paper Pattern

Maximum marks: 100

Time: 3 hrs

The question paper should consist of three parts

Part A

There should be 2 questions each from module I and II Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

-51

Note: Each question can have a maximum of four sub questions, if needed.