Course code	Course Name	L-T-P- Credits	Year of Introduction
ME202	ADVANCED MECHANICS OF SOLIDS	3-1-0-4	2016
Prerequisite	: ME201 Mechanics of solids	TAN	A
	ctives: The main objectives of the course are	LAP	$\sqrt{1}$
	part concepts of stress and strain analyses in a solid.	CA	T
	ly the methodologies in theory of elasticity at a basic level.	LA	
1	uaint with the solution of advanced bending problems.	11	
4. To get	familiar with energy methods for solving structural mechan	nics problems	
Syllabus			
Introduction,	concepts of stress, equations of equilibrium, strain con	nponents, stra	ain-displacement
	npatibility conditions, constitutive relations, boundary of		-
	ry's stress function method, unsymmetrical bending of strai		
	center, energy methods in elasticity, torsion of non-circul	ar solid shaft	s, torsion of thi
walled tubes.			
	tcome: At the end of the course students will be able to		
	concepts of stress and strain analyses in solids. e procedures in theory of elasticity at a basic level.		
	general bending problems.		
	energy methods in structural mechanics problems.		
Text Books		0	
	reenath, Advanced Mechanics of Solids, McGraw Hill,200 A. Kazimi, Solid Mechanics, McGraw Hill,2008	8	
	, Advanced Mechanics of Materials, Pentagon Educational	Services 201	3
	indaraju, TG Sitharaman, Applied elasticity for Engineers,		<u> </u>
	wanan, Advanced Solid Mechanics, NPTEL		
6. S. Anil	Lal, Advanced Mechanics of Solids, Siva Publications and	d Distribution	s, 2017
References B	Books:		
	imosh <mark>enko, J. N. Goodier,</mark> Theory of elasticity, McGraw H		
	kin, and N. Fox, An introduction the theory of elasticity, L	0	
	en Hartog, Advanced Strength of Materials, McGraw Hill,	1987	
	Vang, Applied Elasticity, McGraw Hill, 1983	d Machanias	of Solida by
	olidmechanics.org/contents.htm - Free web book on Applic A.F. Bower.	eu mechanics	or somus by

Course Plan					
Module	Contents	Hours	Sem. Exam Marks		
I	Introduction to stress analysis in elastic solids - stress at a point – stress tensor – stress components in rectangular and polar coordinate systems - Cauchy's equations – stress transformation – principal stresses and planes - hydrostatic and deviatoric stress components, octahedral shear stress - equations of equilibrium	6	15%		
	Displacement field – engineering strain - strain tensor (basics only) – analogy between stress and strain tensors - strain-displacement relations (small-strain only) – compatibility conditions	4			
II	Constitutive equations – generalized Hooke's law – equations for linear elastic isotropic solids - relation among elastic constants – Boundary conditions – St. Venant's principle for end effects – uniqueness theorem	4	15%		
	2-D problems in elasticity - Plane stress and plane strain problems – stress compatibility equation - Airy's stress function and equation – polynomial method of solution – solution for bending of a cantilever with an end load	4			
	FIRST INTE <mark>R</mark> NAL EXAM				
III	Equations in polar coordinates (2D) – equilibrium equations, strain- displacement relations, Airy's equation, stress function and stress components (only short derivations for examination)		15%		
	Application of stress function to Lame's problem and stress concentration problem of a small hole in a large plate (only stress distribution)				
	Axisymmetric problems – governing equations – application to thick cylinders, , rotating discs.	4			
IV	Unsymmetrical bending of straight beams (problems having c/s with one axis of symmetry only) – curved beams (rectangular c/s only) – shear center of thin walled open sections (c/s with one axis of symmetry only)		15%		
	Strain energy of deformation – special cases of a body subjected to concentrated loads, moment or torque - reciprocal relation – strain energy of a bar subjected to axial force, shear force, bending moment and torque				
	SECOND INTERNAL EXAM				
V	Maxwell reciprocal theorem – Castigliano's first and second theorems – virtual work principle – minimum potential energy theorem.	5	20%		

	Torsion of non-circular bars: Saint Venant's theory - solutions for circular and elliptical cross-sections	4	
VI	Prandtl's method - solutions for circular and elliptical cross-sections - membrane analogy.Torsion of thin walled tubes, thin rectangular sections, rolled sections and multiply connected sections	4	20%
	END SEMESTER EXAM	YL.	

Question Paper Pattern

Total marks: 100, Time: 3 hrs

The question paper should consist of three parts

Part A

4 questions uniformly covering modules I and II. Each question carries 10 marks Students will have to answer any three questions out of 4 ($3 \times 10 \text{ marks} = 30 \text{ marks}$)

Part B

4 questions uniformly covering modules III and IV. Each question carries 10 marks Students will have to answer any three questions out of 4 ($3 \times 10 \text{ marks} = 30 \text{ marks}$)

Part C

6 questions uniformly covering modules V and VI. Each question carries 10 marks Students will have to answer any four questions out of 6 ($4 \times 10 \text{ marks} = 40 \text{ marks}$)

Note: In all parts, each question can have a maximum of four sub questions, if needed.

-510

2014