| Course code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Course Name                                                                                                                                                                                                                  | L-T-P-<br>Credits                      | Year of<br>Introduction |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------|--|--|
| ME302                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Heat and Mass Transfer                                                                                                                                                                                                       | 3-1-0-4                                | 2016                    |  |  |
| Prerequis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ites : ME203 Mechanics of fluid                                                                                                                                                                                              |                                        |                         |  |  |
| Course O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dbjectives:                                                                                                                                                                                                                  |                                        |                         |  |  |
| <ul> <li>To introduce the various modes of heat transfer and to develop methodologies for solving a wide variety of practical heat transfer problems</li> <li>To provide useful information concerning the performance and design of simple heat transfer systems</li> <li>To introduce mass transfer</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |                                        |                         |  |  |
| Syllabus:<br>Modes of Heat Transfer: Conduction: Most general heat conduction equation, One dimensional steady state conduction with and without heat generation, Critical radius of insulation, Elementary ideas of hydrodynamics and thermal boundary layers, Convection heat transfer: Newton's law of cooling, Dimensionless numbers, Dimensional analysis, Problems. Fins: Types of fins : Fin efficiency and effectiveness. Boiling and condensation heat transfer, Introduction to heat pipe. Transient heat conduction. Heat exchangers, LMTD and NTU methods. Radiation: laws of radiation, Electrical analogy, Radiation shields. Mass Transfer : Mass transfer by molecular diffusion. Convective mass transfer |                                                                                                                                                                                                                              |                                        |                         |  |  |
| Expected<br>The stude<br>1. Ap<br>2. Ap<br>3. De                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | outcome:<br>nts will be able to<br>oply principles of heat and mass transfer to engineering principles and obtain solutions to problems involving various n<br>esign heat transfer systems such as heat exchangers, fins, ra | oblems<br>nodes of hea<br>diation shie | ut transfer<br>lds etc  |  |  |
| <ul> <li>Text Books:</li> <li>1. Sachdeva R C, Fundamentals of Engineering Heat and Mass Transfer, New Age Science Limited, 2009</li> <li>2. R.K.Rajput. Heat and mass transfer, S.Chand&amp; Co.,2015</li> <li>3. Nag P K., Heat and Mass Transfer, McGraw Hill,2011</li> <li>4. Kothandaraman, C.P., Fundamentals of Heat and Mass Transfer, New Age International, New Delhi, 2006</li> </ul>                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                              |                                        |                         |  |  |
| <ul> <li>Data Book:</li> <li>Heat and Mass Transfer data book: C.P. Kothandaraman, S. Subramanya, New age<br/>International publishers,2014</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                              |                                        |                         |  |  |
| Reference<br>1. Yu<br>2. Ho<br>3. Fra<br>son                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | es Books:<br>nus A Cengel, Heat Transfer: A Practical Approach, McGr<br>Iman J P, Heat Transfer, McGraw Hill, 2011<br>nk P. Incropera and David P. Dewitt, Heat and Mass Tra<br>s, 2011                                      | aw Hill,201<br>ansfer, John            | 5<br>Wiley and          |  |  |

| Course Plan                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                              |  |  |
|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------------------------|--|--|
| Module                      | Contents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Hours | End<br>Sem.<br>Exam<br>Marks |  |  |
| Ι                           | Modes of Heat Transfer: Conduction: Fourier law of heat<br>conduction-Thermal conductivity of solids, liquids and gases-<br>Factors affecting thermal conductivity- Most general heat<br>conduction equation in Cartesian, cylindrical and spherical<br>coordinates One dimensional steady state conduction with and<br>without heat generation conduction through plane walls,<br>cylinders and spheres-variable thermal conductivity<br>conduction shape factor- heat transfer through corners and<br>edges. Critical radius of insulation.                                                                                                                                                 |       | 15%                          |  |  |
| п                           | Elementary ideas of hydrodynamics and thermal boundary<br>layers-Thickness of Boundary layer-Displacement, Momentum<br>and Energy thickness (description only).<br>Convection heat transfer: Newton's law of cooling- Laminar<br>and Turbulent flow, Reynolds Number, Critical Reynolds<br>Number, Prandtl Number, Nusselt Number, Grashoff Number<br>and Rayleigh's Number. Dimensional analysis Buckingham's<br>Pi theorem- Application of dimensional analysis to free and<br>forced convection- empirical relations- problems using<br>empirical relations                                                                                                                                | 10    | 15%                          |  |  |
|                             | FIRST INTERNAL EXAMINATIONEXAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                              |  |  |
| ш                           | Transient heat conduction-lumped heat capacity method. Fins:<br>Types of fins - Heat transfer from fins of uniform cross<br>sectional area- Fin efficiency and effectiveness. Boiling and<br>condensation heat transfer(elementary ideas only),Introduction<br>to heat pipe.                                                                                                                                                                                                                                                                                                                                                                                                                  | 8     | 15%                          |  |  |
| IV                          | Combined conduction and convection heat transfer-Overall<br>heat transfer coefficient - Heat exchangers: Types of heat<br>exchangers, AMTD, Fouling factor, Analysis of Heat<br>exchangers- LMTD method, Correction factor, Effectiveness-<br>NTU method, Special type of heat exchangers (condenser and<br>evaporator, simple problems only)                                                                                                                                                                                                                                                                                                                                                 | 8     | 15%                          |  |  |
| SECOND INTERNAL EXAMINATION |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |       |                              |  |  |
| V                           | Radiation- Nature of thermal radiation-definitions and<br>concepts- monochromatic and total emissive power-Intensity<br>of radiation- solid angle- absorptivity, reflectivity and<br>transmissivity-Concept of black body- Planck' law- Kirchoff's<br>law- Wein's displacement law-Stefan Boltzmann's law- black,<br>gray and real surfaces-Configuration factor (derivation for<br>simple geometries only)- Electrical analogy- Heat exchange<br>between black/gray surfaces- infinite parallel plates, equal and<br>parallel opposite plates-perpendicular rectangles having<br>common edge- parallel discs (simple problems using charts<br>and tables). Radiation shields(no derivation). | 10    | 20%                          |  |  |

| VI | Mass Transfer :Mass transfer by molecular diffusion- Fick's law<br>of diffusion- diffusion coefficient Steady state diffusion of gases<br>and liquids through solid- equimolar diffusion, Isothermal<br>evaporation of water through air- simple problems.<br>Convective mass transfer- Evaluation of mass transfer<br>coefficient- empirical relations- simple problems- analogy<br>between heat and mass transfer. | 8 | 20% |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|

## **Question Paper Pattern**

Use of approved data book permitted

Total marks: 100, Time: 3 hrs

The question paper should consist of three parts Part A

There should be 2 questions each from module I and II

Each question carries 10 marks

Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

## Part B

There should be 2 questions each from module III and IV Each question carries 10 marks Students will have to answer any three questions out of 4 (3X10 marks = 30 marks)

## Part C

There should be 3 questions each from module V and VI Each question carries 10 marks Students will have to answer any four questions out of 6 (4X10 marks =40 marks)

Note: Each question can have a maximum of four sub questions, if needed.

